Logo for University of Iowa Health Care This logo represents the University of Iowa Health Care

Department of Biochemistry 2020 Publications

Department of Biochemistry 2020 Publications since April 30, 2020

  1. Tiwari, M. Lopez-Redondo, L. Miguel-Romero, et al., The SrrAB two-component system regulates Staphylococcus aureuspathogenicity through redox sensitive cysteines, PNAS (2020), https://doi.org/10.1073/pnas.1921307117
  2. Zhang, H. T. Rube, C.A. Vakulskas, et al., Systematic in vitro profiling of off-target affinity, cleavagre and efficiency for CRISPR enzymes, Nucleic Acids Research (2020), https://doi.org/10.1093/nar/gkaa231
  3. Pufall, A.M. Wilson, An idea to explore: A collaboration and cross training in an extended classroom- based undergraduate research experience between primarily undergraduate and research-intensive institutions, Biochemistry and Molecular Biology Education (2020), https://doi.org/10.1002/bmb.21340
  4. C. Sanchez, L. Zhang, S. Evoli, et al., The molecular basis of specific DNA binding by the BRG1 AT-hook and bromodomain, BBA – Gene Regulatory Mechanisms (2018), https://doi.org/10.1016/j.bbagrm.2020.194566
  5. Skuodas, A. Clemons, M. Hayes, et al., The ABCF gene family facilitates disaggregation during animal development, Molecular Biology of the Cell (2020), https://www.molbiolcell.org/doi/10.1091/mbc.E19-08-0443
  6. K. Shetty, R. Walzem, B. Davies, A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time, Journal of Lipid Research (2020), https://www.jlr.org/content/61/4/546.short
  7. Qiao, S.K. Shetty, K.M. Spitler, et al., Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-like Protein 4 Expression in Mice, Diabetes (2020), https://doi.org/10.2337/db19-1181
  8. Johnson, M.G. Flores, J. Rosa, et al., The High Content of Fructose in Human Semen Competitively Inhibits Broad and Potent Antivirals That Target High-Mannose Glycans, Journal of Virology (2020), https://jvi.asm.org/content/94/9/e01749-19
  9. DeMali, A. Salvi, J. Bays, Mechanisms Linking Mechanotransduction and Cell Metabolism, The FASEB Journal (2020), https://doi.org/10.1096/fasebj.2020.34.s1.00150
  10. H. Elcock, Challenges to the Creation of Dynamic Structural Models of Intracellular Systems,Biophysical Journal (2020), https://doi.org/10.1016/j.bpj.2019.11.2033
  11. Duan, N. Green, T.L. Tootle, P.K. Geyer, Nuclear architecture as an intrinsic regulator of Drosophila female germline stem cell maintenance, Current Opinion in Insect Science (2020), https://doi.org/10.1016/j.cois.2019.11.007
  12. Duan, S.C. Kitzman, P.K. Geyer, Survival of Drosophila germline stem cells requires the chromatin binding protein Barrier-to-autointegration factor, Development (2020), https://dev.biologists.org/content/early/2020/04/23/dev.186171
  13. Li, C.B. Ball, G. Collins, et al., Human cytomegalovirus IE2 drives transcription initiation from a select subset of late infection viral promoters by host RNA polymerase II, PLoS pathogens (2020), https://doi.org/10.1371/journal.ppat.1008402
  14. M. Kilpatrick, R.W. Mahling, M.A. Shea, Energetics of Calmodulin Recognition of a Skeletal Muscle Ryanodine Receptor Site, Biophysical Journal (2020), https://doi.org/10.1016/j.bpj.2019.11.1545
  15. Stefanovie, S. Hengel, J. Mlcouskova, et al., DSS1 interacts with and stimulates RAD52 to promote the repair of DSBs, Nucleic Acids Research (2020), https://doi.org/10.1093/nar/gkz1052
  16. Malacaria, M. Honda, A Franchirro, M. Spies, P. Pichierri, Physiological and Pathological Roles of RAD52 at DNA Replication Forks, Cancers (2020), https://doi.org/10.3390/cancers12020402
  17. Honda, E. Paintsil, M. Spies, RAD52 DNA Repair Protein is a Gatekeeper that Protects DNA Replication Forks by Regression by Fork Reversal Motors, Biophysical Journal (2020), https://doi.org/10.1016/j.bpj.2019.11.988
  18. Troitskaia, B. Stekas, M. Spies, Y.R. Chemla, Sequence-Dependent Pausing of a DNA Repair Helicase, Biophysical Journal (2020), https://doi.org/10.1016/j.bpj.2019.11.2144
  19. Subramanyam, M. Spies, RAD51 discrimination between single-and double-strand DNA: a matter of flexibility and enthalpy, The EMBO Journal (2020), https://doi.org/10.15252/embj.2020104547
  20. Earle, T.J. Kirby, G.R. Fedorchak, et al., Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells, Nature Materials (2020), https://doi.org/10.1038/s41563-019-0563-5
  21. M. Weaver, L.M. Cortez, T.H. Khoang, et al., Visualizing Rev1 Catalyze Protein-template DNA Synthesis, bioRxiv (2020), https://doi.org/10.1101/2020.04.10.036236
  22. M. Ripley, M.S. Gildenberg, M.T. Washington, Control of DNA Damage Bypass by Ubiquitylation of PCNA, Genes (2020), https://doi.org/10.3390/genes11020138
  23. Nakamori, G. Panigrahi, S. Lanni, et al., A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo, Nature Genetics (2020), https://doi.org/10.1038/s41588-019-0575-8
  24. Gilmour, B.C., Gudmundsrud, R., Frank, J., Hov, A., Hindkjær Lautrup, S., Aman, Y., Røsjø, H., Brenner, C., Ziegler, M., Tysnes, O.B., Tzoulis, C., Omland, T., Søraas, A., Holmøy, T., Bergersen, L.H., Storm-Mathisen, J., Nilsen, H., Evandro F Fang, E.F., “Targeting NAD+in Translational Research to Relieve Diseases and Conditions of Metabolic Stress and Ageing,” Mechanisms of Ageing and Development186, 2020, DOI:10.1016/j.mad.2020.111208
  25. Fluharty, N.T. & Brenner, C., “Fat Mobilization Without Weight Loss is a Potentially Rapid Response to Nicotinamide Riboside in Obese People: It’s Time to Test with Exercise, American Journal of Clinical Nutrition, in press, 2020.
  26. Heer, C.D. & Brenner, C., “Letting off Electrons to Cope with Metabolic Stress,” Nature Metabolism, in press, 2020.
  27. Matasic, D.S., Yoon, J-Y., Mehdi, H., McLendon, J.M., Schmidt, M.S., Greiner, A.M., Quinones, P., Morgan, G.M., Boudreau, R., Irani, K., Brenner, C. & London, B., “Modulation of the Cardiac Sodium Channel Nav1.5 Peak and Late Currents by NAD+Precursors,” Journal of Molecular and Cellular Cardiology, v. 141, pp. 70-81, https://doi.org/10.1016/j.yjmcc.2020.01.013
  28. Parker, R., Schmidt, M.S., Cain, O., Gunson, B., & Brenner, C., “The NAD+Metabolome is Functionally Depressed in Patients Undergoing Liver Transplantation for Alcohol-related Liver Disease,” Hepatology Communications, in press, 2020. https://doi.org/10.1101/2020.03.28.013581
  29. Gerasimenko, M., Cherepanov, S., Furuhara, K., Lopatina, O., Salmina, A., Shabalova, A., Tsuji, C., Yokoyama, S., Ishihara, K., Brenner, C., & Higashida, H., “Nicotinamide Riboside Supplementation Corrects the Deficits in Oxytocin, Sociability and Anxiety of CD157 Mutants in a Mouse Model of Autism Spectrum Disorder,” Scientific Reports, in press, 2020
  30. Pirinen, E., Auranen, M., Khan, N., Brilhante, V., Urho, N., Pessia, A., Hakkarainen, A., Kuula, J., Heinonen, U., Schmidt, M.S., Haimilahti, K., Piirilä, P., Lundbom, N., Taskinen, M.R., Brenner, C., Velagapudi, V., Pietiläinen, K., Suomalainen, A., “Niacin Improves Systemic NAD+and Performance in Mitochondrial Myopathy,” Cell Metabolism, in press, 2020, https://doi.org/10.1016/j.cmet.2020.04.008
  31. Levine, D.C., Hong, H., Ramsey, K.M., Affinati, A.H., Schmidt, M.S., Cedernaes, J., Omura, C., Lee, C., Brenner, C., Peek, C.B. & Bass, J., “NAD Controls Circadian Reprogramming Through PER2 Nuclear Translocation,” Molecular Cell, in press, 2020, https://doi.org/10.1016/j.molcel.2020.04.010
Monday, May 11, 2020