Introduction to R, Day 2: “Into the Tidyverse”

Michael Chimenti and Diana Kolbe
Dec 5 & 6 2019
Iowa Institute of Human Genetics

Slides adapted from HPC Bio at Univ. of Illinois:
https://wiki.illinois.edu/wiki/pages/viewpage.action?pageId=705021292

Distributed under a CC Attribution ShareAlike v4.0 license (adapted work):
https://creativecommons.org/licenses/by-sa/4.0/
Learning objectives Day 2:

1. Import and work with an example dataset
2. Understand basic operations of the “tidyverse” and tibbles
3. Understand basic plotting functions of ggplot2
4. Learn how to access and work through vignettes for CRAN and Bioconductor packages
5. Be able to describe the differences between Tidyverse R and base R, between CRAN and Bioconductor
The TidyVerse
Why are we learning ‘tidyverse’ now?

- With tidyverse tools you can get started doing useful transformations with data immediately
- Avoid the steep learning curve of base R syntax
- Learn to think like a data scientist
Tidy data principles

1) Variables make up columns
2) Observations make up rows
3) Values go into cells
Example ‘tidy’ dataframe (actually a tibble...more on that later)

```
> iris_tib
# A tibble: 150 x 5
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>      <dbl>     <fct>
1          5.1         3.5          1.4        0.2      setosa
2          4.9         3.0          1.4        0.2      setosa
3          4.7         3.2          1.3        0.2      setosa
4          4.6         3.1          1.5        0.2      setosa
5          5.0         3.6          1.4        0.2      setosa
6          5.4         3.9          1.7        0.4      setosa
7          4.6         3.4          1.4        0.3      setosa
8          5.0         3.4          1.5        0.2      setosa
9          4.4         2.9          1.4        0.2      setosa
10         4.9         3.1          1.5        0.1      setosa
# ... with 140 more rows
```
Model for tidy data science
Importing data into R

Use `read.csv()` or `read.table()` to import your spreadsheets from comma- or tab-separated text files

> read.csv(file = '~/my_files/my_table.csv', header = TRUE, sep = ',')

The tidyverse also contains `read_excel()` which can read excel files:

> read_excel('my_excel_sheet.xlsx')
The TidyVerse
Available datasets within R to play with

Data sets in package ‘datasets’:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirPassengers</td>
<td>Monthly Airline Passenger Numbers</td>
</tr>
<tr>
<td>BJsales</td>
<td>Sales Data with Leading Indicator</td>
</tr>
<tr>
<td>BJsales.lead</td>
<td>Sales Data with Leading Indicator</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon Dioxide Uptake in Grass Plants</td>
</tr>
<tr>
<td>ChickWeight</td>
<td>Weight versus age of chicks on different diets</td>
</tr>
<tr>
<td>DNase</td>
<td>Elisa assay of DNase</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Determination of Formaldehyde</td>
</tr>
<tr>
<td>HairEyeColor</td>
<td>Hair and Eye Color of Statistics Students</td>
</tr>
<tr>
<td>Harman23.cor</td>
<td>Harman Example 2.3</td>
</tr>
<tr>
<td>Harman74.cor</td>
<td>Harman Example 7.4</td>
</tr>
<tr>
<td>Indometh</td>
<td>Pharmacokinetics of Indomethacin</td>
</tr>
<tr>
<td>InsectSprays</td>
<td>Effectiveness of Insect Sprays</td>
</tr>
<tr>
<td>JohnsonJohnson</td>
<td>Quarterly Earnings per Johnson & Johnson Share</td>
</tr>
<tr>
<td>LakeHuron</td>
<td>Level of Lake Huron 1875-1972</td>
</tr>
<tr>
<td>LifeCycleSavings</td>
<td>Intercountry Life-Cycle Savings Data</td>
</tr>
<tr>
<td>Lobolly</td>
<td>Growth of Lobolly pine trees</td>
</tr>
<tr>
<td>Nile</td>
<td>Flow of the River Nile</td>
</tr>
<tr>
<td>Orange</td>
<td>Growth of Orange Trees</td>
</tr>
<tr>
<td>OrchardSprays</td>
<td>Potency of Orchard Sprays</td>
</tr>
<tr>
<td>PlantGrowth</td>
<td>Results from an Experiment on Plant Growth</td>
</tr>
</tbody>
</table>
Today we will use an internal R dataset

Type:

```r
> data("iris")
```

Then,

```r
> head(iris)
```

```
> head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
  1          5.1        3.5         1.4       0.2    setosa
  2          4.9        3.0         1.4       0.2    setosa
  3          4.7        3.2         1.3       0.2    setosa
  4          4.6        3.1         1.5       0.2    setosa
  5          5.0        3.6         1.4       0.2    setosa
  6          5.4        3.9         1.7       0.4    setosa
```
Type:

> str(iris)

```
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 
$ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... 
```
Dataframe (base R) to tibble (tidyR)

Type:
> library(tidyverse)
> iris_tib <- as_tibble(iris)

Then:
> iris
> iris_tib

Notice the difference in the output?
The TidyVerse
A tibble is a special tidyverse dataframe

```r
> iris_tib
# A tibble: 150 x 5

  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    <dbl>      <dbl>       <dbl>      <dbl>    <fct>
1      5.1         3.5        1.4         0.2  setosa
2      4.9         3.1        1.4         0.2  setosa
3      4.7         3.2        1.3         0.2  setosa
4      4.6         3.1        1.5         0.2  setosa
5      5           3.6        1.4         0.2  setosa
6      5.4         3.9        1.7         0.4  setosa
7      4.6         3.4        1.4         0.3  setosa
8      5           3.4        1.5         0.2  setosa
9      4.4         2.9        1.4         0.2  setosa
ten   4.9          3.1        1.5         0.1  setosa
# ... with 140 more rows
```
Type:

> summary(iris_tib)

Summary is a very useful "Base R" function
First ‘dplyr’ operation: select rows with `filter()`

Type:

```r
> filter(iris_tib, Species == "virginica")
```

```
# A tibble: 50 x 5
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
  <dbl>      <dbl>       <dbl>      <dbl>     <fct>
1     6.3       3.3         6           2.5 virginica
2     5.8       2.7         5.1         1.9 virginica
3     7.1       3           5.9         2.1 virginica
4     6.3       2.9         5.6         1.8 virginica
5     6.5       3           5.8         2.2 virginica
6     7.6       3           6.6         2.1 virginica
7     4.9       2.5         4.5         1.7 virginica
8     7.3       2.9         6.3         1.8 virginica
9     6.7       2.5         5.8         1.8 virginica
10    7.2       3.6         6.1         2.5 virginica
```
Assign the results to a new variable
Type:

```r
> iris_tib_vir <- filter(iris_tib, Species == "virginica")
> iris_tib_vir
```

```
# A tibble: 50 x 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
         <dbl>      <dbl>       <dbl>       <dbl> <fct>
1        6.3        3.3          6         2.5 virginica
2        5.8        2.7          5.1        1.9 virginica
3        7.1         3            5.9        2.1 virginica
4        6.3        2.9          5.6        1.8 virginica
5        6.5         3            5.8        2.2 virginica
6        7.6         3            6.6        2.1 virginica
7        4.9        2.5          4.5        1.7 virginica
8        7.3        2.9          6.3        1.8 virginica
9        6.7        2.5          5.8        1.8 virginica
10       7.2        3.6          6.1        2.5 virginica
# ... with 40 more rows
```
‘Arrange’ a tibble to sort on values

Type:

> arrange(iris_tib, Sepal.Length)

> arrange(iris_tib, desc(Petal.Width))
dplyr `select()` to subset and rename columns

> select(iris_tib, Species)

> select(iris_tib, -Species)

> select(iris_tib, c(Species, Petal.Length))

> select(iris_tib, Sp=Species, PL=Petal.Length)
Add new columns with dplyr `mutate()`

```r
> mutate(iris_tib, Petal.Length.Mean = mean(Petal.Length))
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2 setosa</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1 setosa</td>
<td>3.76</td>
<td></td>
</tr>
</tbody>
</table>

A tibble: 150 x 6

… with 140 more rows
Add new columns with dplyr `mutate()`

```r
> mutate(iris_tib, Sepal.Area = Sepal.Width * Sepal.Length)
```

```
# A tibble: 150 x 6

      <dbl>      <dbl>        <dbl>       <dbl>    <fct>     <dbl>
1       5.1       3.5          1.4         0.2 setosa    17.8
2       4.9       3.0          1.4         0.2 setosa    14.7
3       4.7       3.2          1.3         0.2 setosa    15.0
4       4.6       3.1          1.5         0.2 setosa    14.3
5       5.0       3.6          1.4         0.2 setosa    18.0
6       5.4       3.9          1.7         0.4 setosa    21.1
7       4.6       3.4          1.4         0.3 setosa    15.6
8       5.0       3.4          1.5         0.2 setosa    17.0
9       4.4       2.9          1.4         0.2 setosa    12.8
10      4.9       3.1          1.5         0.1 setosa    15.2
# ... with 140 more rows
```
The “split-apply-combine” data science paradigm

SPLIT

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>13</td>
<td>Male</td>
</tr>
<tr>
<td>Mary</td>
<td>15</td>
<td>Female</td>
</tr>
<tr>
<td>Alice</td>
<td>14</td>
<td>Female</td>
</tr>
<tr>
<td>Peter</td>
<td>13</td>
<td>Male</td>
</tr>
<tr>
<td>Roger</td>
<td>14</td>
<td>Male</td>
</tr>
<tr>
<td>Phyllis</td>
<td>13</td>
<td>Female</td>
</tr>
</tbody>
</table>

APPLY

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>13</td>
<td>Male</td>
</tr>
<tr>
<td>Peter</td>
<td>13</td>
<td>Male</td>
</tr>
<tr>
<td>Roger</td>
<td>14</td>
<td>Male</td>
</tr>
<tr>
<td>Phyllis</td>
<td>13</td>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>15</td>
<td>Female</td>
</tr>
<tr>
<td>Alice</td>
<td>14</td>
<td>Female</td>
</tr>
<tr>
<td>Phyllis</td>
<td>13</td>
<td>Female</td>
</tr>
</tbody>
</table>

COMBINE

Calculate groupwise summary stats

New object w/ Summarized Groupwise Stats

Figure 4: Two examples of splitting up a data frame by variables. If the data frame was split up by both sex and age, there would only be one subset with more than one row: 13-year-old males.
Introducing the dplyr “pipe” operator

In order to “split-apply-combine” we need a tool to chain operations together:

\[\text{log}(x) \%>\% \text{plot()} \]

This operator is called a ‘pipe’, and basically says do the thing on the left and pass the result to the thing on the right...
Here are four reasons why you should be using pipes in R:

- You'll structure the sequence of your data operations from left to right, as opposed to from inside and out;
- You'll avoid nested function calls;
- You'll minimize the need for local variables and function definitions; And
- You'll make it easy to add steps anywhere in the sequence of operations.

https://www.datacamp.com/community/tutorials/pipe-r-tutorial
So let’s first group a tibble with ‘group_by’:

Type:

> iris_gr <- group_by(iris, Species)

Read this as: group ‘iris’ by species, assign result to “iris_gr”

What type of object is “iris_gr”?
Let’s ‘split-apply-combine’ with a pipe:

Type:

> iris_gr_mean <- group_by(iris, Species) %>%
 mutate(meanwidth=mean(Petal.Width))

Read this as: group ‘iris’ by species, pass groups to mutate, calculate groupwise mean petal width, assign result to “iris_gr_mean”
```r
> iris_gr_mean

# A tibble: 150 × 6
# Groups: Species [3]

<table>
<thead>
<tr>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
<th>Species</th>
<th>meanwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;fct&gt;</td>
<td>&lt;dbl&gt;</td>
</tr>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>4.9</td>
<td>3</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>5</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>5</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
<td>0.246</td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>setosa</td>
<td>0.246</td>
</tr>
</tbody>
</table>

# … with 140 more rows
```
Let's count the rows in each group

Type:

```r
> summarize(iris_gr_mean, count = n())
```

<table>
<thead>
<tr>
<th>Species</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>50</td>
</tr>
<tr>
<td>versicolor</td>
<td>50</td>
</tr>
<tr>
<td>virginica</td>
<td>50</td>
</tr>
</tbody>
</table>
Now we calculate other groupwise values:

Type:

```r
> summarize(iris_gr_mean, max_Sep_Len = max(Sepal.Length))
```

```
# A tibble: 3 x 2
   Species max_Sep.Len
     <fct>     <dbl>
1  setosa      5.8
2 versicolor    7
3  virginica    7.9
```

What happens if you try this on ‘iris_tib’ (i.e., not grouped)?
Dealing with strings with *stringr*

Type:
```
> str_to_upper(iris_tib$Species)
```

Think like a data scientist:
```
> iris_tib_UP <- iris_tib %>% mutate(Species = str_to_upper(Species))
```

What does the new tibble look like?
We’ve learned to manipulate tibbles...

Now let’s plot some data...
The TidyVerse
'ggplot2’ basics

Data + aesthetic + geom + options

ggplot2 operates on tibbles and dataframes

Data = a tibble or dataframe
Aesthetic = x and y columns for plotting
Geom = the type of plot
Options = other options like axis limits, legends
ggplot2 builds plots like dplyr manipulates data:

```
New_data <- my_df %>% mutate() %>% group_by()

Myplot <- ggplot(data) + aes() + geom() + theme()
```

The ‘+’ is analogous to a pipe operator
How does this work with our tibble, ‘iris_tib’?

An example:

```r
> library('ggplot2')

> myplot <- ggplot(iris_tib, aes(x = Petal.Width, y = Petal.Length))
> myplot

Notice that no data is plotted yet...now add a scatter point “geom”:

> myplot <- myplot + geom_point()
> myplot
```
The result:

```r
aes(x,y) geom_point()
```
Building up plots

Now let's add a trendline:

> myplot <- myplot + geom_smooth()
> myplot

Let's add some colors:

> myplot <- myplot + geom_point(aes(color=Species))

What have we done?
`geom_smooth()`

`geom_point(aes(color=Species))`

Legend is automagically generated for us!
> myplot <- ggplot(iris_tib, aes(x = Petal.Width, y = Petal.Length))
> myplot <- myplot + geom_point(aes(color=Species, size = Sepal.Width)) + geom_smooth()

Now what have we done?
We are displaying 4 data variables simultaneously in an interpretable, publication quality way!
Too many variables? Facet them out!

```r
> myplot <- ggplot(iris_tib, aes(x = Petal.Width, y = Petal.Length))
> myplot <- myplot + geom_point(aes(size = Sepal.Width)) + facet_grid("Species")
```

A Facet Grid builds multiple plots from factors in your dataframe
"Facet" plots on species
What is Bioconductor?

www.bioconductor.org

• “… open source, open development software project to provide tools for the analysis and comprehension of high-throughput genomic data”

• Primarily based on R language (functions can be in other languages), and run in R environment

• Current release consists of 1741 software packages (sets of functions) for specific tasks

• Also maintains 948 annotation packages for many commercial arrays and model organisms plus 371 experiment data packages and 27 workflow packages
More background on Bioconductor

http://bioconductor.org/about/

- Oversen by a core team, mostly located at the Roswell Park Cancer Institute in Buffalo, NY*
 - Provide infrastructure and access to packages
 - Include metadata, annotation and data sets
 - Develop/extend a common software platform to provide **interoperability between packages**
 - Provide documentation and training

- But majority of software packages contributed by users
 - Any package that is related to genomic data and passes BioC's checks is accepted
 - BioC enforces more rigorous standards than CRAN
Reference manuals vs. vignettes

Reference manual: list of all functions in a package with explanations of their arguments (e.g., all help pages together alphabetically in a pdf)

Vignette: Explanation of how to use the functions in a typical analysis in start-to-finish order

Both CRAN and BioC require reference manuals, but only BioC (mostly) requires vignettes!
Navigating Bioconductor

Navigate your browser to http://bioconductor.org/packages/release/BiocViews.html

- BiocViews – allows partitioning of packages by categories

Take a few minutes to investigate the different software packages. Can you find the names of 2 or more packages that might be useful for your research?

How many packages are linked to ChIPSeq (as of Nov 2019)?

A. 30
B. 62
C. 89
D. 184
Navigating Bioconductor’s annotation data

Go to: http://bioconductor.org/packages/release/BiocViews.html

- Annotation packages also partitioned by categories
- Under PackageType:
 - BSgenome - genome sequences
 - OrgDb - gene annotation packages for species

Does your research organism have any packages in BioC?

A. Yes
B. No
Where to find other “non-model” organisms

See software packages:

1. AnnotationForge - build your own org.*.db package
2. AnnotationHub - access to resources for > 1000 "less-model organisms" from the following databases:

Highly recommend doing AnnotationHub's How To vignette
Bioconductor package install method

- Used to have biocLite() for R < 3.5.0
- Now have submitted BiocManager package to CRAN:
 - install.packages("BiocManager")
- Then can install any package via:
 - BiocManager::install("limma")
- BioC’s version also automatically checks for package updates for any installed package
- *Please do not update packages if you already loaded any via library(*)
How to access vignettes and example code

> browseVignettes(package = "Biostrings")

Takes you a local HTML webpage for this package:

Vignettes found by `browseVignettes("Biostrings")`

- A short presentation of the basic classes defined in Biostrings 2 - [PDF](#) [source](#) [R code](#)
- Biostrings Quick Overview - [PDF](#) [source](#) [R code](#)
- Handling probe sequence information - [PDF](#) [source](#) [R code](#)
- Multiple Alignments - [PDF](#) [source](#) [R code](#)
- Pairwise Sequence Alignments - [PDF](#) [source](#) [R code](#)

Try this now ^^^
Typical tasks and Bioconductor/R packages

From:
Additional Help

- BioC provides some example workflows for analyzing different types of genomic data.
 - Pick a workflow that is of the most interest to you. Write down some of the packages they suggest using.

- BioC runs various training courses and also make the training materials available on the web.
 - Search for CSAMA 2019
 - BioC2019 materials are also very useful

- Community-supplied resources and tutorials

- F1000 Research Bioconductor Channel https://f1000research.com/channels/bioconductor
Base R Swirl lessons

type :

> library('swirl')

>swirl()

Work lessons 7 through 10