Why is *Neisseria meningitidis* so good at entering the CSF and causing meningitis?

Blood Brain Barrier

Control the exchange between the blood and cerebral compartment

Barriers:

Ways to cross the BBB

Nature Reviews | Microbiology

Neisseria meningitidis

-Gram negative ~10-40% of population is colonized -13 Serogroups -A-C, E-29, H, I, K, L, W-135, X-Z -A, B, C, W-135, and Y encapsulated -Invasive vs carrier isolates -LPS-sialic acid -capsule -Human only -Meningitis lacks a relevant animal model

How does *N. meningitidis* get to the blood brain barrier?

-Crosses from the nasopharnyx to the blood
 N. meningitidis
 -LPS (sialyation prevents entry)
 -Opc play role in crossing nasal epithelial cells
 -Survive shear force

 -Protect against complement

 -capsule
 -Iron chelation

N. meningitidis Opc binds α -actinin to invade

How does N. meningitidis attach to endothelial cells?

Nature Reviews | Microbiology

N. meningitidis attaches to endothelial cells using type 4 pili

Type 4 pili bind CD147

Opacity proteins contribute to adhesion

Opa-opacity proteins

- -OpaA, OpaB, and OpaD
- -promote aggregation
- -antigenic variation
- -constitutively transcribed

-pentameric repeat 5'-CTCTT-3' within amino-terminal leader peptide

Opa interacts with CEACAM

-Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) -Mediates intracellular binding

CD33

How does N. meningitidis invade

N. meningitidis forms cortical plagues

Recruitment of molecular linkers Provide protection

A

N. meningitidis invades by binding ß2-adrenegic receptor

-G protein-coupled receptor

-scaffolds kinases resulting in actin polymerization

N. meningitidis triggers release of matrix metalloproteinases-8

-Breakdown extracellular matrix at tight junctions

What is the host response to N. meningitidis infection?

-edema, increased intracranial pressure and altered cerebral flow

- -Septicemia
- -TLR2 and TLR4
- -NO production
- -Higher levels of $\mathsf{TNF}\alpha$ due to LOS

Cytokine release following interaction of bacteria with the leptomeninges leads to meningitis

Streptococcus pneumoniae

-Gram positive 90+serotypes based on capsule -essential for meningitis -thicker ~10% of adults and ~40% of children are carriers -phase variation opaque vs translucent -Human only

How does *S. pneumoniae* attach?

Choline binding protein (CbpA) interacts with plgR

Zhang et al., Cell 2000

How does S. pneumoniae invade?

S. pneumoniae does not disrupt tight junctions

How is still up for debate -transcytosis Cross into the subarachnoid space

S. pneumoniae can infect the olfactory bulb

Teichoic acid interacts with gangliosides

NW-nasal wash ON/E-olfactory nerves and epithelium OB-olfactory bulb

What is the host response to S. pneumoniae infection?

-Microglia express TLRs and produce pro-inflammatory cytokines -ROS and NO

Comparison of *S. pneumoniae and N. meningitidis*

	Streptococcus pneumoniae	Neisseria meningitidis
Nature of the pathogen	Gram-positive cocci, encap- sulated, serotype diversity, extracellular	Gram-negative cocci, encap- sulated, serogroup diversity, clonal complexes, extracel- lular
Site(s) of entry and colonization	n Nasopharynx, Lung	Nasopharynx
Factors involved in bacterial adherence and invasion	Cell wall-anchored proteins, cytolysin, capsule	Capsule, type IV pili, outer membrane proteins (Opa, Opc, FBA, ACP, MspA)
Mechanisms of survival and dis semination in the blood	- Capsule-dependent protection, complement inhibitors	Capsule-dependent protection, complement inhibitors
Mode(s) of entry into the CNS	Invasion across the BBB and B-CSFB	Invasion across the B-CSFB
Causes of tissue damage in the CNS (cerebral ischemia, edema, hydrocephalus, increased intracranial pres- sure)	Cytotoxin, cell wall-TLR2 induced inflammation, neuronal apoptosis, increased BBB permeability	Release of inflammatory media tors, increased BBB perme- ability, neuronal apoptosis, LPS
Pathology and clinical symp- toms	Meningitis, sepsis, pneumonia	Meningitis, sepsis
Possible sequelae	Deafness, learning deficits, paralysis	Deafness, neuro-developmental deficits

Table 1 Main similarities and differences of bacterial pathogens causing meningitis

Conclusion

What makes a pathogen successful at crossing the BBB?

-invasive

-survive in the blood

-evade immune system (capsule)

-antigenic variation

What separates *N. meningitidis* from other pathogens that can cross the BBB?

-Adapted well to invade and cause disease

-higher tropism

-manipulation of the host

How is *Neisseria meningitidis* so good at entering the CSF and causing meningitis? Background

-BBB anatomy

-Nm pathogenic isolates vs carriage isolates

-Sp

Compare and contrast S. pneumoniae and N. meningitidis

-How do they get to the BBB

-How do they attach

-How do they cross/entry

-How do they cause disease once in the CSF/BBB

Conclude-what separates Nm from other pathogens