# It Takes Two

Special ID Grand Rounds April 6, 2017

Dilek Ince, MD Laura Whitmore, PhD 1. What is the role of GATA2?



2. Why do *Gata2* mutations make patients prone to certain infections and hematologic malignancies?

## GATA transcription factors

- 6 human GATA transcription factors
- Bind to DNA consensus sequence (A/T)GATA(A/G)
- Mediated through two Cys4 zinc fingers (Cys-X<sub>2</sub>-Cys-X<sub>17</sub>-Cys-X<sub>2</sub>-Cys)



Adapted from Chlon & Crispino Development 2012;139:3905-3916

## GATA2 structure and expression

#### GATA2 genomic structure



#### **Multiple transcripts:**

- Hematopoietic cells & CNS
- Also in endothelial cells, placenta, fetal liver, and fetal heart
- Unknown (recently reported in NCBI database)



#### Vicente et al. Critical Reviews in Oncology/Hematology, 2012; 82(1):1-17

## GATA2 is required for HSC generation and survival

- GATA2 is pivotal in the endothelial to hematopoietic transition that produces the first adult HSCs
- Homozygous knockout of Gata2 is lethal due to the failure of hematopoiesis

**AGM** – aorta-gonad-mesonephros



CFU-GEMM – Granulocyte, erythrocyte, macrophage, megakaryocyte
CFU-GM – Granulocyte, macrophage
CFU-G – Granulocyte
CFU-M – Macrophage
BFU-E – Burst forming unit-erythroid

## GATA2 is required for HSC generation and survival

- GATA2 is pivotal in the endothelial to hematopoietic transition that produces the first adult HSCs
- Homozygous knockout of Gata2 is lethal due to the failure of hematopoiesis

AGM – aorta-gonad-mesonephros FL – fetal liver





# GATA2 is required for the development of specific cell lineages



Chlon & Crispino Development 2012;139:3905-3916

## GATA2 is replaced by GATA1 during erythropoiesis



Anguita et al. EMBO J. 2004;23:2841-2852

**FDCP** (factor-dependent cell Paterson) **mix cells** – murine multipotent hematopoietic progenitors

**MEL** (mouse erythroleukemia cells) – transformed erythroid cells

## GATA2 is replaced by GATA1 during erythropoiesis



Anguita et al. EMBO J. 2004;23:2841-2852



Ferreira et al. Mol. Cell. Biol. 2005;25:1215-1227 Vicente et al. Crit Rev in Oncol Hematol, 2012; 82(1):1–17 **FDCP** (factor-dependent cell Paterson) **mix cells** – murine multipotent hematopoietic progenitors

**MEL** (mouse erythroleukemia cells) – transformed erythroid cells

#### "GATA switch"









#### Gata2 mutations



#### Mechanisms of GATA2 deficiency

| Type of mutation (location)                             | Reported mechanisms                                                  | Probable effect                                                              |
|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| Regulatory<br>(non-coding regions)                      | Mutation in intron 5 enhancer                                        | Haploinsufficiency due to reduced transcription                              |
| *Insertion/deletion; nonsense<br>(across coding region) | Nonsense-mediated decay; premature stop codon; disrupted splice site | Haploinsufficiency due to loss of expression or severe truncation of protein |
| SNP; missense<br>(conc. in Zn fingers)                  | Non or hypo-functional protein; dominant negative functional protein | Haploinsufficiency due to expression of GATA2 protein with reduced function  |

\*Tended to have earlier age of clinical presentation (18 vs 26 yrs)

Adapted from Collin et al. BJH Rev 2015;169:173-187

### Depletion of specific populations of BM CD34+ cells



GATA2 haploinsufficiency results in BM depletion of:

MLP: Multilymphoid progenitors (CD38<sup>-</sup>CD90<sup>10</sup>CD45RA<sup>+</sup>) B/NK precursors (CD38<sup>+</sup>CD10<sup>+</sup>)

GMP: Granulocyte macrophage progenitors (CD38+CD10-CD45RA+)

#### Depletion of certain peripheral cell populations



Dickinson et al. Blood 2014;123:863-874

#### Blood cell counts correlate with disease severity



#### Dysfunction of the IL-12/IFN-γ axis



IL-23

#### GATA2-deficient patients have defective NK cell cytotoxicity



Loss of NK cell cytotoxicity likely leads to compromised antiviral immunity in GATA2 patients

25

# GATA2 localizes to lymphatic valves, suggesting a key role in lymphatic vascular development



Does GATA2 haploinsufficiency lead to altered development and, hence, early onset lymphedema?

Jan Kazenwadel et al. Blood 2012;119:1283-1291

### GATA2 and MDS/AML

- 30-50% of patients at presentation
- 30-year median onset
- 90% lifetime risk



Migliaccio, & Bieker Blood 2011;118:2647-2649

| GATA2 configuration            | Associated with   | Outcome                                 |  |
|--------------------------------|-------------------|-----------------------------------------|--|
| Germline heterozygous mutation | ASXL1             | High risk                               |  |
|                                | monosomy 7        | MDS/AML                                 |  |
|                                | trisomy 8         |                                         |  |
|                                | trisomy 21        |                                         |  |
|                                | der(1;7), +1q –7q |                                         |  |
|                                | EZH2              |                                         |  |
|                                | HECW2             |                                         |  |
|                                | GATA1             | Collin et al. 2015. BJH Rev 169:173-187 |  |

Evolution of cellular deficiency with GATA2 mutation



Rachel E. Dickinson et al. Blood 2014;123:863-874





Mycobacterial and viral infections, MDS/AML, etc.

## Questions