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Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly
severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this
review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in
the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microceph-
aly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and
vaccines.

Zika virus (ZIKV) is a member of the Flavivirus genus of the
Flaviviridae family, which includes other globally relevant hu-

man pathogens such as dengue virus (DENV), yellow fever virus
(YFV), West Nile virus (WNV), Japanese encephalitis virus (JEV),
and tick-borne encephalitis virus (TBEV) (1, 2). ZIKV is an envel-
oped virus with an approximately 10.7-kb positive-sense RNA
genome. Similarly to other flaviviruses, the ZIKV genome encodes
a single polyprotein that is cleaved posttranslationally by host and
viral proteases into three structural proteins (capsid [C], premem-
brane [prM], and envelope [E]) and seven nonstructural proteins
(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (3, 4). C binds to
the viral RNA to form a nucleocapsid, prM prevents premature
fusion with host membranes, and E mediates cellular attachment,
entry, and fusion (5). The viral nonstructural proteins regulate
viral transcription and replication and also attenuate host antiviral
responses (1, 6, 7). ZIKV is a member of the Spondweni virus
group within the mosquito-borne clade of flaviviruses (Fig. 1) and
is closely related to the four serotypes of DENV, with approxi-
mately 43% amino acid identity across the viral polyprotein as
well as in the ectodomain of E.

ZIKV was first isolated in 1947 from a febrile sentinel rhesus
monkey in the Zika forest, a research station of the East African
Virus Research Institute (now the Uganda Virus Research Insti-
tute) in Entebbe, Uganda (8, 9). The virus was isolated subse-
quently from Aedes africanus mosquitoes in the same forest (9–
11), and multiple monkey species in the Zika forest were found to
be seropositive for ZIKV (11). Small mammals in the Zika forest
(including squirrels, tree rats, giant pouched rats, and civets) did
not show serological evidence of ZIKV infection, consistent with a
model where primates (both humans and monkeys) are the pri-
mary vertebrate hosts for ZIKV (10). Multiple species of Aedes
mosquitoes contribute to enzootic maintenance of ZIKV, but
likely only a subset of these transmit the virus to humans (12, 13).
There is evidence of high rates of ZIKV seroprevalence in Africa
and Asia (9, 14–17), although the specificity of such assays is un-
certain, given the significant serological cross-reactivity between
ZIKV and other flaviviruses (see below). In the decades following
its discovery, ZIKV was isolated from human patients sporadically
during outbreaks in Africa and Southeast Asia (15, 18) but re-
mained obscure due to the fairly benign nature of the infection

(which generally manifests as a self-limiting febrile illness; see be-
low).

ZIKV came to global attention in 2007, when it caused an ex-
plosive outbreak in Micronesia (18–21). It is estimated that ap-
proximately 75% of the population of the island of Yap became
infected during a 4-month period (19). In the ensuing years, ZIKV
spread throughout Oceania (22–25) and then was detected in Bra-
zil in early 2015 (26, 27). Although the precise means by which
ZIKV was introduced to the Western Hemisphere is unknown, the
presumption is that the virus came to Brazil from Polynesia via a
viremic traveler or an infected mosquito (2, 26, 28, 29). The Aedes
aegypti mosquito, which can transmit ZIKV, is abundant in Brazil,
and autochthonous transmission was established. The outbreak
initially was concentrated in northeastern Brazil. However, the
virus rapidly spread throughout Latin America and the Carib-
bean, such that within 1 year most countries in the region reported
local transmission (30–32). Further spread of the virus is antici-
pated, and imported cases already have been reported in the
United States, Europe, and elsewhere in travelers returning from
Latin America and the Caribbean during the current outbreak (30,
33–35). The rate at which ZIKV has spread through Latin America
and the Caribbean since its introduction appears comparable to
that seen with chikungunya virus (CHIKV) after its introduction
to the Western Hemisphere in late 2013, suggesting that it reflects
the abundance and competence of the Aedes aegypti mosquitoes
that are used as vectors by both viruses, as well as the availability of
a susceptible host population (36). ZIKV genome sequences from
Polynesia and South America are highly similar (2, 26, 29) (ap-
proximately 99% nucleotide identity across the viral genome), but
there are genetic differences, for example, 6 amino acid changes
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between the H/PF/2013 strain from French Polynesia and the
SPH2015 strain from Brazil (GenBank accession numbers
KJ776791.1 and KU321639.1) (37). Future studies are needed to
determine whether such changes impact disease pathogenesis,
tropism, or vector competence. The ability of changes in viral
sequence to impact the epidemic potential of arboviruses was seen
previously with CHIKV, where a small number of mutations, in-
cluding a A226V change in the E1 glycoprotein, enabled the virus
to use Aedes albopictus mosquitoes as vectors, which have an ex-
panded geographic range compared to Aedes aegypti, facilitating
epidemic spread into new areas (37–39).

MODES OF TRANSMISSION
Vector-borne transmission. ZIKV is a mosquito-transmitted vi-
rus (Fig. 2). ZIKV has been isolated from many species of Aedes
mosquito, but only a subset of these (including Ae. aegypti, Ae.
albopictus, Ae. hensilii, and Ae. polynesiensis) are competent vec-
tors for transmission (9–13, 18, 21, 40–42). Aedes aegypti is
thought to be the principal vector spreading ZIKV during the
current outbreak in Latin America and the Caribbean, likely due
to the urban abundance and anthropophilic nature of this mos-
quito (43). Monkeys are presumed to serve as reservoir hosts for
ZIKV, although the primary species has not been identified (11,
18). It is unclear whether ZIKV will become endemic in New
World monkeys and establish a sylvatic transmission cycle in Latin
America analogous to that seen with YFV or will be maintained
exclusively through urban transmission cycles with no New
World sylvatic cycle, similarly to DENV (44). Humans are ampli-
fying hosts for ZIKV, and urban cycles of transmission between
humans and mosquitoes sustain and cause epidemics. Indeed, the
island of Yap in Micronesia experienced an extensive ZIKV out-
break, and yet there are no nonhuman primates on this island
(19). There currently is no evidence that animals other than hu-
mans and nonhuman primates serve as amplifying hosts for
ZIKV, suggesting a mode of transmission similar to those of
DENV, YFV, and CHIKV. While mosquito-borne transmission
clearly is the main cause of ZIKV outbreaks, other modes of trans-
mission have been reported.

Blood-borne transmission. As is the case for other blood-

borne infections, a ZIKV viremic donor could potentially contam-
inate the blood supply (45, 46), and cases of ZIKV transmission
through transfusions of donated blood, although not yet pub-
lished, have been reported in Brazil. In many areas, including the
United States, Canada, and Europe, the blood supply is already
screened by nucleic acid amplification tests to detect WNV (47–
50). The same approach, once a screening test becomes available,
could be used to detect ZIKV, and plans exist in several countries
to screen the blood supply for ZIKV or to defer blood donation
from those who have traveled to countries where ZIKV is circu-
lating. In the absence of an approved diagnostic assay to detect
ZIKV contamination, strategies are available to inactivate infec-
tious agents in the blood supply (46, 51).

Sexual transmission. There is evidence of sexual transmission
of ZIKV (34, 52, 53), and ZIKV RNA has been detected in semen
(54, 55). To date, all reported sexually transmitted cases of ZIKV
infection have been from infected men to their female partners.
Although some of these cases were accompanied by hematosper-
mia, infectious ZIKV was detectable in semen even after viremia
had cleared (undetectable ZIKV RNA in serum), arguing against
blood-borne transmission (54). Moreover, while other sexually
transmitted infections cause hematospermia (56), this has not
been a common presentation of ZIKV infection, nor has it been
evident in all cases of sexually transmitted ZIKV (34). Recent re-
ports of infectious ZIKV in urine, along with the detection of
ZIKV RNA in urine even after viremia has cleared (57), could be
consistent with ZIKV replication in urogenital tissues. ZIKV RNA
has been detected in saliva (58), and infectious ZIKV in saliva was
recently reported. Due to the highly correlated nature of behav-
iors, sexual and salivary transmission can be difficult to distin-
guish. Indeed, Kaposi’s sarcoma-associated herpesvirus initially
was thought to be sexually transmitted, but subsequent findings
indicated that the primary mode of transmission was through sa-
liva (59). Also, pigs can develop high viral loads in the tonsils and
transmit JEV through oronasal secretions, which demonstrates
that this is a possible transmission route for flaviviruses (60). Al-
though sexual transmission is unlikely to be a major cause of ZIKV
outbreaks, the presence of virus in semen warrants investigation,
especially given recent evidence that Ebola virus RNA can be de-

FIG 1 Schematic phylogeny illustrating the genetic relationships between selected flaviviruses that are human pathogens. The dendrogram (145) is based on the
amino acid sequence of the complete polyprotein.
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tected in the semen of survivors for months after the acute infec-
tion has cleared. Similarly, ZIKV RNA was detected in semen 62
days after the onset of febrile symptoms (55). The immune-priv-
ileged nature of the testes may allow ZIKV to persist in this tissue.
Such reservoirs have the potential to initiate new transmission
cycles from seemingly healthy individuals (61, 62). The growing
number of imported ZIKV cases in areas of the United States and
Europe where local mosquito transmission is less likely provides
an opportunity to detect and determine the significance of alter-
native transmission mechanisms (34).

Maternal transmission. ZIKV RNA has been detected in
breast milk (63). As this route of transmission has been docu-
mented for other flaviviruses (64–66), ZIKV-infected mothers
may be able to pass the virus to nursing children. However, it is not
known whether infectious ZIKV is present in breast milk or what
its possible duration is relative to that of acute infection, and
ZIKV-infected mothers are still encouraged to breastfeed their
infants (67). Perinatal transmission of ZIKV was documented in
French Polynesia (63), but it is unknown whether this represented
transmission in breast milk, blood-borne transmission during de-
livery, or in utero transmission.

The question of in utero transmission has gained urgency as the
emergence of ZIKV in Brazil has coincided with an alarming in-
crease in the number of cases of microcephaly, with the northeast-
ern states reporting �4,000 cases over approximately 4 months, a
more than 20-fold increase from prior years (68–71). Microceph-
aly is a congenital abnormality in which the fetal brain is under-
developed (72, 73). There is not a standard definition of micro-
cephaly, as definitions range from a newborn head circumference
of �32 cm to a circumference of 33 cm and from �2 to 3 standard
deviations below the mean for gestational age (69). Many factors
can cause microcephaly during pregnancy, including other vi-
ral infections (e.g., human cytomegalovirus, rubella virus, and
varicella-zoster virus), exposure to toxins (e.g., drugs or alco-
hol), and genetic mutations. Microcephaly can be asymmetric,
meaning a small head on an otherwise normally proportioned
body, or symmetric, meaning that the small head is propor-
tional to a small overall body size; the type of microcephaly can
be characteristic of its etiology. Microcephaly can be diagnosed
by prenatal ultrasound, but generally not until the late second
trimester, and many cases are not evident until after birth. The
long-term effects of microcephaly can vary widely, from virtu-

FIG 2 ZIKV pathogenesis. The typical course of ZIKV infection is illustrated (green background), with potential severe effects requiring further investigation
indicated (blue background). DENV, dengue virus; ADE, antibody-dependent enhancement.
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ally no defects to cognitive deficits and severe physical disabil-
ity (73).

It is important to note that the majority of the microcephaly
cases reported during the current outbreak have yet to be con-
firmed or linked directly to ZIKV; in ongoing follow-up studies,
approximately one-third of reported microcephaly cases had been
corroborated, and presumably some of these will be shown to be
attributable to causes other than ZIKV infection (68, 70, 71). Fur-
ther complicating the analysis, the case definition for microceph-
aly has changed over the course of the current outbreak: in De-
cember 2015, the Brazilian Ministry of Health adopted a newborn
head circumference measurement of �32 cm as the case defini-
tion, compared to the less stringent �33-cm cutoff used previ-
ously (69). Clearly, better data are required to assess the potential
connection between ZIKV infection and microcephaly; epidemi-
ological studies, including case-control and prospective cohort
studies, are under way and should bring clarity to this issue in
time. Nonetheless, accumulating evidence strongly suggests a
causal role for ZIKV in the development of microcephaly. In ad-
dition to the timing and geographic distribution of microcephaly
cases relative to ZIKV infections, data supporting transplacental
infection include the following: (i) detection of ZIKV RNA and
sequencing of full-length viral genomes from the amniotic fluid of
fetuses diagnosed with microcephaly by ultrasound in mothers
who reported previous ZIKV infection but were not viremic at the
time of amniocentesis; (ii) detection of ZIKV RNA and/or antigen
in the tissues of three microcephalic infants who died shortly after
birth; (iii) detection of ZIKV RNA in the placenta from a micro-
cephalic fetus after miscarriage; (iv) detection of a partial sequence
of a ZIKV genome and viral antigen in four fetal brain tissue sam-
ples recovered from miscarriages and neonatal death; (v) sequenc-
ing of a full-length ZIKV RNA genome and visualization of ZIKV-
like particles by electron microscopy in a fetal brain from a
terminated pregnancy (74–81). A recent report of anti-ZIKV IgM
in the cerebral spinal fluid of 12 infants with microcephaly also
supports the hypothesis of in utero infection with ZIKV.

Although other viruses can cross the placenta and cause micro-
cephaly in humans and/or animals, this presentation has never
previously been associated with flaviviruses (82–86). In utero in-
fection with WNV has been studied, with no clear evidence of an
association with microcephaly (87–89). Furthermore, there are an
estimated �390 million DENV infections occurring annually (in-
cluding an estimated �25 million in Brazil [90]), so even a very
low rate of DENV-induced microcephaly would have been ob-
served. While the mechanisms by which ZIKV may cause micro-
cephaly are unknown, the preliminary evidence and the severity of
the disease have prompted the U.S. Centers for Disease Control
and Prevention (CDC), Public Health Agency of Canada, Austra-
lian Department of Foreign Affairs and Trade, and Public Health
England, among other agencies, to recommend that women who
are pregnant or planning to become pregnant avoid travel to areas
where ZIKV is circulating (in effect, nearly all of Latin America
and the Caribbean, among other locations) (74, 75, 80, 91, 92).
Such travel advisories have a significant economic impact on the
affected countries, especially with the approach of the 2016 Olym-
pic Games in Rio de Janeiro. Furthermore, in response to the
potential for sexual transmission of ZIKV, CDC has cautioned
pregnant women against unprotected sex with partners who have
had potential ZIKV exposure (34, 91, 93). Remarkably, health
officials in several Latin American and Caribbean countries have

recommended that women postpone pregnancy in response to the
ZIKV outbreak. In the United States, pregnant women have be-
come infected while traveling to areas with active ZIKV transmis-
sion or by sexual contact with ZIKV-infected male partners. The
outcomes of these ZIKV-exposed pregnancies have been variable,
including early pregnancy loss, elective termination, delivery of an
infant with severe microcephaly, and seemingly unaffected infants
(80). Many unanswered questions remain concerning in utero
transmission of ZIKV infection and the development of micro-
cephaly, as further discussed below.

CLINICAL FEATURES OF ZIKA VIRUS INFECTION

Historically, ZIKV infection caused a variable clinical syndrome in
humans ranging from no signs or symptoms to an influenza-like
viral illness that appeared similar in the early stages to those caused
by other epidemic arboviruses, including DENV and CHIKV. For
ZIKV, approximately 20% of individuals who become infected
progress to a clinically apparent febrile illness, although hospital-
ization is rare (18, 19). Signs and symptoms associated with ZIKV
infection occur on average within 3 to 7 days of mosquito inocu-
lation and include an abrupt onset of fever accompanied by head-
ache, arthralgia, myalgia, conjunctivitis, vomiting, fatigue, and/or
maculopapular rash (94) (Fig. 2). For many years, ZIKV infection
was considered self-limiting with no long-term sequelae, but
more severe complications have become apparent during the
more recent ZIKV outbreaks in the South Pacific and Latin Amer-
ica, possibly because the greater number of infections has facili-
tated detection and reporting of rare outcomes (though other
factors may also contribute to increased ZIKV pathogenesis).
Although ZIKV infection has not been reported to cause the
plasma leakage and hemorrhage associated with severe DENV dis-
ease, ZIKV has caused thrombocytopenia and hematospermia
(52, 54, 95). There are no reported fatal cases of ZIKV in otherwise
healthy people. However, ZIKV-associated mortality has been de-
scribed in patients with comorbidities, including sickle cell disease
(96), and congenital ZIKV infection and post-ZIKV Guillain-
Barré syndrome (GBS) can be fatal.

During the 2013–2014 ZIKV outbreak in French Polynesia,
neurological disorders were linked to ZIKV infection, as there was
an increase in the incidence of GBS, a postinfection autoimmune
neuropathy that can result in weakness, paralysis, and death (92,
97–99). A case-control study of the outbreak found that GBS pa-
tients were more likely to have evidence of past ZIKV infection
than controls, with 0.24 cases of GBS per 1,000 ZIKV infections
(98). Patients with post-ZIKV GBS had atypically low levels of
anti-ganglioside antibodies compared to patients with GBS of
other etiologies, suggesting that ZIKV may induce GBS by mech-
anisms different from those of other causes (98). Cases of a diffuse
demyelinating disorder consistent with GBS that are temporally
associated with ZIKV infection have also been reported in Brazil,
El Salvador, Colombia, and Venezuela (75, 92). More studies are
needed to understand the linkage between ZIKV infection and
GBS, particularly the pathophysiological mechanisms at play.
Possible mechanisms include (i) immunopathology due to viral
antigen mimicry with a host protein; (ii) virus sequence changes
resulting in enhanced tropism for the peripheral nervous system;
and (iii) an association with prior or concurrent immune re-
sponses to DENV (97–100).

Most concerning is the sharp increase in the number of cases of
microcephaly in newborns in the northeastern region of Brazil
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that is associated with ZIKV infection of pregnant women (101).
Several cases of presumed intrauterine ZIKV infection resulted in
coarse cerebral calcifications in different brain regions of newborn
infants or fetuses in utero (76). A recent study of a fetus with
microcephaly recovered after elective termination at 32 weeks of
gestation also revealed numerous calcifications in the cortical and
subcortical regions of the frontal, parietal, and occipital lobes of
the cerebral cortex (77). Hydrops fetalis and hydranencephaly
were noted in a fetus with microcephaly, which was followed by
fetal demise (81). The reported microcephaly cases may represent
only the severe end of the spectrum, such that newborns with
less-severe infection could still have long-term cognitive or func-
tional sequelae (76). Indeed, ocular findings in infants with pre-
sumed ZIKV-associated microcephaly were described recently.
Approximately 30% of children with suspected ZIKV infection in
utero had evidence of significant retinal and optic nerve abnor-
malities (102).

PATHOGENESIS OF ZIKV INFECTION

Although no recent ZIKV pathogenesis studies have been per-
formed to explain the possible microcephaly observed in Brazil,
experiments in mice that were performed 40 and 60 years ago
suggest that under certain circumstances ZIKV has a tropism for
cells in the brain. The original ZIKV strain (MR 766) was isolated
by George Dick and colleagues in 1947 from the brain of a 5- to
6-week-old Swiss mouse after it was inoculated via an intracere-
bral route with the serum of a febrile sentinel rhesus macaque (9).
The same group showed subsequently that passaged ZIKV strains
caused signs of central nervous system (CNS) disease, including
motor weakness and paralysis, after intracerebral inoculation in
mice of different ages (8). Mice under 7 days of age were suscep-
tible to lethal ZIKV infection when inoculated by an intraperito-
neal route, whereas adult mice were less sensitive (103). In mice,
the pathological manifestations of disease were restricted to CNS
tissues. Neuronal degeneration and cellular infiltration were ob-
served in regions of the spinal cord and brain with evidence of
Cowdry type A inclusion bodies (8), which also are described as
occurring after neuronal infection by herpesviruses. Evidence of
neuronal injury also was observed in the pathological evaluation
of a human fetus infected in utero with ZIKV. In this case, diffuse
astrogliosis and activation of microglia were present, and damage
extended to the brain stem and spinal cord, with Wallerian degen-
eration of the descending corticospinal tracts noted (77). Beyond
the CNS, no other tissue, including the kidney, lung, spleen, and
liver, supported significant ZIKV infection. In comparison, other
animals, including cotton rats, guinea pigs, rabbits, and rhesus
monkeys, did not develop CNS disease, even after intracerebral
inoculation (8). More recent studies using a ZIKV isolate from
French Polynesia demonstrated infection of human keratinocytes,
dermal fibroblasts, and skin biopsy specimens, consistent with the
skin being the initial site of ZIKV replication after mosquito inoc-
ulation, similarly to WNV and DENV infections (104–107). Sim-
ilarly to DENV, ZIKV can use DC-SIGN and the TAM receptors
Axl and Tyro3 as attachment factors (104). Also similarly to other
flaviviruses, ZIKV infected human dendritic cells in culture and its
activity was restricted by the antiviral effects of type I and type II
interferon (104).

Some ZIKV strains have one N-linked glycosylation site in
their envelope (E) protein (N154), whereas others lack predicted
glycosylation sites (108). This pattern contrasts with the pattern

seen with DENV, which has two N-linked glycosylation sites (N67
and N154), and is similar to the patterns seen with the E proteins
of more distantly related flaviviruses, including WNV and TBEV
(N154) (109–111). Although N-linked glycosylation on E is asso-
ciated with enhanced mosquito transmission and/or increased
virulence in mammals for some flaviviruses, including WNV,
TBEV, and others (112–118), it remains unknown whether differ-
ential glycosylation between ZIKV strains determines or even cor-
relates with pathogenicity.

DIAGNOSIS OF ZIKV INFECTION

Because ZIKV causes a nonspecific influenza-like illness without
pathognomonic features, it is challenging clinically to distinguish
it from other viral illnesses. This is especially true because ZIKV
cocirculates and shares mosquito vectors with DENV and CHIKV,
which present similarly, with fever, rash, arthralgia, and myalgia
(25, 119). In addition to cocirculation, recent reports have de-
scribed coinfection of multiple arboviruses, including ZIKV and
DENV (24).

Given the challenges in clinical diagnosis, a laboratory-based
diagnosis of ZIKV is the gold standard (120). Beyond direct virus
isolation, which can be difficult outside highly specialized labora-
tories, the most definitive current diagnostic tool is a reverse tran-
scription-PCR (RT-PCR)-based assay that detects ZIKV RNA and
can distinguish ZIKV infections from DENV, CHIKV, and other
viral infections (120). Because ZIKV viremia in humans lasts for a
short duration of 3 to 5 days (20, 121), serum RT-PCR assays,
while highly specific, have low sensitivity rates. Urine and saliva
samples may have greater utility for diagnosing ZIKV infection by
RT-PCR, as viral RNA is detectable at a higher load and with a
longer duration in these body fluids than in serum (57, 58). In one
study in French Polynesia, 19.2% of tests were positive for ZIKV
RNA in saliva but negative in blood. The use of saliva samples
increased the rate of molecular detection of ZIKV and was of par-
ticular interest in groups (e.g., children and newborns) where
blood was difficult to collect (58). Viral detection in urine and
saliva is not unique to ZIKV, as DENV RNA has been detected in
both fluids, whereas infectious WNV and WNV RNA have been
detected in urine (122–124).

Serology-based diagnosis of ZIKV infection, which is critical to
surveillance, epidemiologic analyses, and acute diagnoses, poses a
challenge even to experienced laboratory personnel due to the
extensive cross-reactivity of antibodies against related flaviviruses
(e.g., YFV, DENV, and JEV) that are derived from natural infec-
tion or vaccination (19, 20, 120). As an example, results for ZIKV-
infected patients can be positive in an IgM assay for DENV, par-
ticularly if ZIKV occurs as a secondary flavivirus infection.
Cross-reactivity was observed more frequently with DENV than
with YFV, JEV, or WNV, although further studies are needed, as
small numbers of samples were tested. In comparison, in cases in
which ZIKV is the first flavivirus encountered, the extent of cross-
reactivity is lower (20). Anti-ZIKV IgM was detectable as early as 3
days after onset of illness, with most samples having it present by
day 8. Neutralizing antibody developed as early as 5 days after
illness onset, but, again, assays may still yield substantial cross-
reactivity in the setting of prior flavivirus infection or vaccination.
The use of paired acute-phase and convalescent-phase sera and a
greater than 4-fold rise in ZIKV antibody titers specifically may
increase the accuracy of serological testing.

Thus, if ZIKV epidemics occur in populations with DENV or
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other flavivirus vaccines or natural immunity, extensive cross-
reactivity in the IgM and neutralization assays can occur, which
could lead to an incorrect diagnosis. This is particularly problem-
atic as ZIKV epidemics spread through Latin America and the
Caribbean, where DENV prevalence is high. Ideally, a serological
assay that minimizes cross-reactivity of other flaviviruses is
needed to increase the specificity of IgM and IgG assays. Based on
published studies performed with related flaviviruses (125–127),
the development of diagnostic assays with ZIKV NS1 proteins or
ZIKV E proteins and subviral particles encoding mutations in the
highly cross-reactive fusion loop in domain II might enhance the
specificity of serological tests substantially.

UNANSWERED QUESTIONS
In utero transmission and teratogenic effects. While the intro-
duction of a pathogen into a new environment often brings epi-
demiological and diagnostic challenges, at the outset of the ZIKV
outbreak in Brazil, there was no reason to expect a unique presen-
tation; indeed, Zika fever is typically milder than dengue fever.
The association between ZIKV and microcephaly was unexpected,
as this presentation has not been associated with flaviviruses, and
congenital abnormalities are not characteristic of flavivirus infec-
tion. Accumulating evidence indicates a role for maternal ZIKV
infection as an explanation for the increase in microcephaly cases
in Brazil, although further assessment of reported and historical
cases is necessary to determine the magnitude of the increase and
the attack rate (68, 70, 71). Many questions remain regarding the
mechanisms by which ZIKV might cause congenital defects, in-
cluding microcephaly. The simplest mechanism would be an in-
herent ability of ZIKV to cross the placenta, followed by direct
infection of nervous tissue in the developing fetus. This idea is
supported by the detection of ZIKV RNA, complete genomes,
antigen, and viral particles in fetal tissues, placenta, and amniotic
fluid from pregnancies with microcephaly (74, 76–78, 80, 81, 92)
and by prior studies in mice that suggested a tropism for central
nervous system tissues (8). If ZIKV is neurotropic and neuroviru-
lent in the developing fetus, its effects seem unlikely to manifest
only as microcephaly. While microcephaly may be the most ap-
parent congenital abnormality from ZIKV infection, it remains
possible that the virus can cause a spectrum of neurological effects,
some of which may not be evident for months or years. The asso-
ciation between ZIKV and microcephaly also could be a conse-
quence of its introduction into a ZIKV-naive population or, alter-
natively, into a population with unique patterns of flavivirus
immunity, with prior immunity to DENV or other flaviviruses
modulating ZIKV pathogenesis.

As the placenta generally is an effective barrier preventing mi-
croorganisms in the maternal circulation from accessing the de-
veloping fetus, it will be important to determine what mechanisms
ZIKV uses to circumvent this barrier. For example, can ZIKV
infect placental trophoblast cells directly, or does it employ some
other method to access the fetal compartment? For other congen-
ital infections, the risk of fetal infection varies at different stages of
pregnancy (82, 83), and the most extensively described cases of
ZIKV-associated microcephaly have all involved infection during
the first trimester (76–78, 80). It will be important to determine
the temporal risk of congenital ZIKV infection, in order to make
informed recommendations to pregnant women about the risks
of exposure to ZIKV (74, 91).

A growing body of evidence indicates that ZIKV can cross the

placenta, infect the fetus, and damage the developing brain (74,
76–80, 92). However, demonstrating a direct causal role for con-
genital ZIKV infection in the development of microcephaly will
require more extensive clinical and epidemiological studies, many
of which are now in progress. The existing data do not demon-
strate that ZIKV infection is sufficient to cause microcephaly, and
other factors may potentiate the teratogenic effects of ZIKV, in-
cluding coinfections, environmental factors, viral strain differ-
ences, or host genetics. It is noteworthy that to date, ZIKV-asso-
ciated microcephaly has been observed only in Brazil and not in
previous outbreaks or in other countries. This may reflect the large
number of ZIKV infections in Brazil (�1.5 million estimated) and
the timing of the outbreak, with Brazil experiencing the earliest
effects. However, if microcephaly remains exclusive to women
who are in Brazil or who were infected with the virus while trav-
eling there, it will be important to consider cofactors that may
impact in utero infection by ZIKV.

Interactions between ZIKV and DENV. One of the character-
istic features of DENV pathogenesis is that whereas infection with
one serotype provides durable immunity to that same serotype,
antibodies to one DENV serotype can exacerbate infection with
different serotypes via antibody-dependent enhancement (ADE)
(128–130). ADE occurs when cross-reactive nonneutralizing an-
tibodies bind to a heterologous DENV serotype. Antibody-op-
sonized but nonneutralized virus can infect myeloid cells (e.g.,
monocytes or macrophages) expressing Fc-gamma receptors at a
higher rate, allowing enhanced infection and yield. Because of this,
secondary DENV infections (or primary infections in infants with
circulating maternal antibodies) can produce severe disease man-
ifestations, including plasma leakage, hemorrhage, and circula-
tory collapse. ADE can be demonstrated for many flaviviruses in
cell culture, but the phenomenon appears to be biologically rele-
vant only in the context of DENV, possibly due to the degree of
antigenic relatedness between different DENV serotypes or be-
cause of the unique biology of the DENV NS1 protein (131, 132).
Given the relatedness between DENV and ZIKV, and the high
cross-reactivity demonstrated in serological assays, ADE between
DENV and ZIKV and altered disease pathogenesis warrant further
evaluation. The severity of disease seen in recent outbreaks of
ZIKV has been greater than that seen in earlier outbreaks. While
explanations for this include changes in the virus and an enhanced
ability to detect rare presentations in larger outbreaks, one feature
that distinguishes the most recent ZIKV outbreaks is that they
occurred in regions of DENV hyperendemicity, where multiple
strains of DENV cocirculate and where most people have been
infected previously by one or more DENV serotypes. This raises
the possibility that ZIKV infection in individuals immune to
DENV could result in more severe disease presentations. While
the natural history of recent outbreaks has been of ZIKV intro-
duction into regions with high DENV prevalence, as ZIKV be-
comes endemic in the Western Hemisphere it also will be impor-
tant to monitor reciprocally how ZIKV immunity impacts DENV
pathogenesis. If prior DENV immunity impacts ZIKV pathogen-
esis, we might expect an even greater burden of ZIKV disease if
outbreaks emerge in areas of Southeast Asia where the burden of
DENV infection is even greater than in Latin America (90).

Vaccine development. Successful vaccination programs have
reduced the global health burden of many flavivirus infections.
More than 500 million doses of vaccine to prevent YFV infection
have been administered since the vaccine was developed in 1937,
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and effective vaccines have blunted the impact of JEV and TBEV.
Recently, after decades of study, the first live-attenuated tetrava-
lent DENV vaccine (Dengvaxia) completed phase III human trials
and is being deployed in Brazil, Philippines, and Mexico.

As no ZIKV vaccines have been tested even at the preclinical
stage, we are likely years away from the introduction of a ZIKV
vaccine. It is expected that at least some groups with existing fla-
vivirus vaccine platforms (e.g., chimeric live attenuated strains,
passaged or genetically engineered live attenuated strains, E pro-
tein subunit, subviral particles, inactivated virions, or DNA plas-
mid) will apply these strategies toward ZIKV vaccine development
in an expedited manner. A major issue remains as to whether it
will be easy or difficult to generate an immunogenic and safe vac-
cine against ZIKV. Given the relatively low variation between
ZIKV strains (2, 26, 29, 108) (approximately 94% amino acid
identity across the viral genome) and the lack of different geno-
types or serotypes, it is plausible that an effective vaccine against
one strain would function broadly against all circulating ZIKV
strains. ZIKV outbreaks are occurring in areas with high sero-
prevalence rates for DENV infection and vaccination with YFV.
Thus, at least some fraction of candidates for ZIKV vaccines would
have preexisting cross-reactive antibodies derived from natural or
vaccine-induced flavivirus immunity. This could impact ZIKV
responses in one of three ways: (i) by boosting cross-reactivity
immunity, conferring protection against ZIKV; (ii) by boosting
cross-reactive immunity at the expense of generating protective
ZIKV-specific responses (“original antigenic sin”); (iii) by neu-
tralizing live-attenuated ZIKV without appreciably affecting
cross-reactive immunity (sterilizing immunity).

Development of therapeutics. Given that vaccines against
ZIKV may be years away, the development of immediate measures
to control or limit ZIKV disease should be a priority. To date, no
drug screening studies have been published with ZIKV. Because
DENV infections are so frequent worldwide, effort over the past
decade has been made in evaluating inhibitors of specific steps in
the DENV life cycle. Such drugs, were they to advance through
clinical trial, might have inhibitory activity against other flavivi-
ruses, including ZIKV. Indeed, antiviral drug discovery screens
have been performed to identify inhibitors of the fusogenic activ-
ity of E protein, the protease and helicase activity of NS3, and the
RNA-dependent RNA polymerase and methyltransferase activi-
ties of NS5, with ongoing further preclinical development (133).
Additional strategies being considered include the repurposing of
drug screens, including the testing of FDA-approved or well-stud-
ied “orphan” drugs against ZIKV infection. Because drugs against
flavivirus proteins could select rapidly for resistant variants, the
concept of targeting host molecules required for DENV infectivity
(134) or viral proteins that require oligomerization (135) has
emerged as a possible strategy. Drugs that target steps in flavivirus
infection or cell-intrinsic immunity also could be considered. Fi-
nally, passive transfer or antibody-based therapeutics against
ZIKV as prophylaxis or treatment may be possible, once strongly
neutralizing human monoclonal antibodies are isolated, in anal-
ogy to studies performed with other flaviviruses (136, 137). Re-
gardless of the approach, one obstacle to developing ZIKV thera-
peutics is that a key target population would be pregnant women;
the design and implementation of trials to test new drugs in preg-
nant women will be challenging.

Animal models of ZIKV pathogenesis. Development of vac-
cines and therapeutics would be expedited by the development of

animal models of the different manifestations of ZIKV disease.
There are few available data in nonhuman primates apart from the
original isolation of ZIKV from the serum of a febrile rhesus mon-
key (9) and a study recently initiated to assess ZIKV infection
dynamics in three rhesus macaques (https://dholk.primate.wisc
.edu/project/dho/public/Zika/public/ZIKV-001-public/begin
.view?). There are also few available data in mice, as only three
papers have reported on ZIKV infection in mice and nothing has
been published in almost 40 years (8, 103, 138). Although these
studies suggested that ZIKV can replicate and cause injury in cells
of the central nervous system, whether this pathogenesis is or is
not related to the current linkages to GBS or microcephaly re-
mains uncertain and requires further study. A systematic analysis
of ZIKV disease resulting from infection through multiple routes
(e.g., intradermal, subcutaneous, and intravenous) in different
strains of mice at different ages is needed. Such studies might
include panels of genetically diverse mice, such as Collaborative
Cross mice (139), to identify genetic susceptibility loci that could
be related to human disease or to develop infection models for
therapeutic and vaccine testing (140, 141). In addition to direct
infection of newborn, juvenile, adult, and old mice, studies in
which pregnant dams are inoculated with ZIKV and the effects on
fecundity, neonatal infection, and brain development are evalu-
ated could address the presumed linkage to microcephaly in hu-
mans.

Public health considerations. The association between ZIKV
infection and neurological complications such as microcephaly
and GBS prompted the World Health Organization to declare on
1 February 2016 a Public Health Emergency of International Con-
cern surrounding the current ZIKV epidemic in Latin America
and the Caribbean (142). The sudden surge of public health, clin-
ical, and basic science interest in ZIKV will increase our under-
standing of this virus that had remained an obscure viral curiosity
until quite recently.

In analogy to the introduction of WNV into the United States
in 1999 and the arrival of CHIKV in the Caribbean in 2013, the
emergence of ZIKV in Brazil represents another example of an
arbovirus introduction into the Western Hemisphere with signif-
icant impacts on human health and ecology (143). The appear-
ance of new, more severe clinical presentations in recent ZIKV
outbreaks also highlights that familiar infections can produce new
phenotypes when introduced to new ecological and host systems.
The abundance of Aedes aegypti mosquitoes in Latin America and
the Caribbean suggests that ZIKV may become endemic in the
region. Autochthonous transmission also is a possibility in the
southern United States, where Aedes aegypti mosquitos are com-
mon, and perhaps farther north, where Aedes albopictus may serve
as a vector. However, the presence of cultural and economic fac-
tors such as air conditioning, window screens, indoor lifestyles,
and vector control measures, as well as a temperate climate, may
prevent widespread ZIKV outbreaks in the United States, much as
DENV and CHIKV have not caused epidemics here. Nonetheless,
imported cases from travelers are likely to increase in the United
States, Europe, and elsewhere (30, 33–35). Indeed, ZIKV infection
is now a nationally reportable disease in the United States.

The lack of specific antiviral measures to combat ZIKV empha-
sizes the importance of vector control strategies for combatting
arbovirus disease. Such approaches (removing sources of standing
water that serve as breeding sites, larvicide and insecticide appli-
cation, behavioral modifications to avoid mosquito exposure, and
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possibly the controlled introduction of genetically modified or
sterile mosquitoes into an epidemic site) also will protect against
DENV, CHIKV, and other mosquito-transmitted diseases (144).
The unexpected linkage between ZIKV and microcephaly and the
lack of specific measures to prevent or treat ZIKV disease in preg-
nant women, as well as a lack of information to assess the risks
posed by ZIKV infection during pregnancy, have prompted public
health authorities in some countries to issue highly unusual rec-
ommendations regarding pregnancy, including postponement. In
the United States, the CDC has recommended enhanced prenatal
surveillance of pregnant women who have traveled to areas with
ZIKV circulation (74, 80, 91). Such recommendations are framed
as representing an “abundance of caution” but must be consid-
ered in light of the reality of implementation. Access to contracep-
tives, prenatal care, and safe abortion services should be compo-
nents of any public health response to ZIKV.

CONCLUSIONS

ZIKV emergence in the Western Hemisphere has followed what
has become a familiar script, in which a previously obscure vector-
borne disease is introduced into a new ecological system and host
population and then spreads rapidly with significant implications
for human health. In the case of ZIKV, this most recent outbreak
has been associated with unexpected clinical presentations, and it
has been difficult to evaluate the risks and severity of ZIKV infec-
tion due to an absence of specific diagnostic reagents and of a basic
understanding of the molecular virology and pathogenic mecha-
nisms of this virus.
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