Logo for University of Iowa Health Care This logo represents the University of Iowa Health Care

Neurobiology of Pain


Kathleen A. Sluka, PT, PhD, FAPTA


3148 Medical Laboratories
Phone: (319) 384-4442

Postdoctoral Position Open

Dr. Sluka is currently searching for a highly motivated postdoctoral research scholar to join her Neurobiology of Pain Research Laboratory.  Please email her for additional information and instructions on how to apply for the position.

UIHC Project Art

Dr. Sluka displayed her artwork "Cells of Life" through Project Art at the University of Iowa Hospitals & Clinics (UIHC). Her exhibit displays original painting designed to show the beauty of the cells within the body in both normal and disease states, and includes the communication network between cells.  The Pappajohn Biomedical Institute recently displayed her gallery in the sky gallery of the Pappajohn Biomedical Discovery Building and Medical Education and Research Facility. You can view this art at the following link: 

Facebook:  https://www.facebook.com/1486107174974162/posts/2148046875446852/

Healing Pain Podcast

Dr. Sluka discusses a Mechanism based approach to pain management on the Healing Pain podcast with Dr. Joe Tatta, which is based on a recent manuscript in Physical Therapy by Drs. Chimenti, Frey Law and Sluka in May 2018. Click here to view the podcast.

Pain Research Forum - Webinar by Dr. Sluka

Dr. Sluka presented a webinar for the Pain Research Forum on November 18, 2016 entitled "Exercise-induced pain and analgesia: role of the innate immune system".  She discusses her latest data showing differences in the immune system between sedentary and physically active animals.  Click to view the video of the presentation and the discussion that followed.  The Pain Research Forum is an interactive web community dedicated to finding treatments for untreatable pain conditions and provides a resource for researchers interested in studying pain.  

Research Interests

Dr. Sluka's laboratory studies the peripheral and central mechanisms of chronic musculoskeletal pain, and non-pharmacological treatment for chronic pain. These studies involve the use of animal models of muscle pain developed and characterized in Dr. Sluka's laboratory, as well as projects in human subjects. We use a variety of techniques to address these questions including cell culture, molecular biology, genetic manipulations, behavioral pharmacology, and standard clinical trial methodology.  Our overall goals are to improve the management of pain for people with a variety of musculoskeletal pain conditions by discovering the underlying mechanisms that lead to the development of chronic pain, discovering new therapies for pain management, and improving the use of currently available treatment for pain.  

Current Projects

Exercise-induced pain.

Goal: Examine the underlying mechanisms for how exercise can exacerbate pain

These studies involve examining the mechanisms that contribute to exercise induced pain.  In people with chronic pain, acute physical activity and exercise can exacerbate their pain.  Our laboratory has developed models of exercise-induced pain that involve applying a fatiguing exercise stimulus in combination with a low-dose muscle insult to produce long-lasting widespread muscle pain.  We are currently examining the 1) role of fatigue metabolites - ATP, lactate, and protons - released during the exercise task can sensitize nociceptors to produce pain, 2) the role of the immune system in the development of exercise-induced pain and the differences between sedentary and physically active mice, and 3) sites, neurotransmitters, and receptors in the brainstem that are altered by unaccustomed exercise and can lead to exercise-induced pain - glutamate, serotonin, opioids and their receptors.

Funded by NIH AR061372 

Recent References:

Gregory NS, Whitley PE, Sluka KA.  Effect of intramuscular protons, lactate, and ATP on muscle hyperalgesia in rats.  PLoS One. 2015 Sept 17; 10(9):e0138576.

Gregory NS, Brito RG, Fusaro MC, Sluka KA.  ASIC3 is required for development of fatigue-induced hyperalgesia.  Mol Neurobiol. 2016 Mar; 53(2):1020-30.

Dailey DL, Keffala VJ, Sluka KA.  Do cognitive and physical fatigue tasks enhance pain, cognitive fatigue, and physical fatigue in people with fibromyalgia?  Arthritis Care Res (Hoboken). 2015 Feb; 67(2):288-96.  

Exercise-induced analgesia.

Goal:  Examine the underlying mechanisms for how exercise can prevent and reduce pain

Regular physical activity and exercise is an effective treatment for existing chronic pain, and can prevent the development of chronic pain.  Our laboratory is examining the underlying mechanisms for how regular physical activity can prevent the development of pain and reduce existing chronic pain using animal models.  We exercise animals with running wheels to simulate regular physical activity or on a treadmill to simulate a regular exercise program, and compare these to sedentary animals.  We are currently examining 1) the central mechanisms underlying this analgesia: sites, neurotransmitters, and receptors in the brainstem - glutamate, serotonin, opioids and their receptors, and 2) immune mechanisms underlying this analgesia: local and systematic changes in immune cells and cytokines.

Funded by NIH AR 061372

Recent References:  

Sabharwal Rm Rasmussen L, Sluka KA, Chapleau MW.  Exercise prevents development of autonomic dysregulation and hyperalgesia in a mouse model of chronic muscle pain.  Pain. 2016 Feb; 157(2);387-98. 

Leung A, Gregory NS, Allen LA, Sluka KA.  Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice.  Pain. 2016 Jan;157(1):70-9.

Bobinski F, Ferreira TA, Cordova MM, Dombrowski PA, da Cunha C, Santo CC, Poli A, Pires RG, Martins-Silva C, Sluka KA, Santos AR.  Role of brainstem serotonin in analgesia produced by low-intensity exercise on neuropathic pain after sciatic nerve injury in mice.  Pain. 2015 Dec; 156(12):2595-606.

Fibromyalgia activity study with TENS (FAST).

Goal:  Test the effectiveness of TENS for pain during activity in people with fibromyalgia 

Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological treatment for chronic pain commonly used by physical therapists.  Our laboratory has discovered the underlying mechanisms for how TENS works using animal models and translating these findings into human subjects.  We have discovered that TENS reduces central excitability and increases central inhibition in an opioid-dependent manner.  We have subsequently shown that TENS is more effective for evoked pain such as hyperalgesia and pain during activity, when compared to resting pain.  This two-site clinical trial will test the effects of home usage of TENS during physical activity in people with fibromyalgia on a variety of outcomes measures including pain during movement, fatigue, psychosocial variables, function, and quality of life.  We will also test the ability of TENS to restore normal pain physiology including descending inhibition and hyperalgesia measures, and factors that affect response to TENS.

Funded by NIH UM1 AR063381 

Recent References:

Noehren B, Dailey DL, Rakel, BA, Vance CG, Zimmerman MB, Crofford LJ,Sluka KA.  Effect of transcutaneous electrical nerve stimulation on pain, function, and quality of life in fibromyalgia: a double-blind randomized clinical trial.  Phys Ther. 2015 Jan; 95(1):129-40.

Dailey DL, Frey Law LA, Vance CG, Rakel BA, Merriwether EN, Darghosian L, Golchha M, Geasland KM, Spitz R, Crofford LJ, Sluka KA.  Perceived function and physical performance are associated with pain and fatigue in women with fibromyalgia.  Arthritis Res Ther. 2016 Mar 16; 18:68. doi: 1.

Vance CG, Dailey DL, Rakel BA, Sluka KA.  Using TENS for pain control: the state of the evidence.  Pain Manag. 2014 May; 4(3):197-209.

Dailey DL, Rakel BA, Vance CG, Liebano RE, Amrit AS, Bush HM, Lee KS, Lee JE, Sluka KA.  Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia.  Pain. 2013 Nov; 154(11):2554-62.

Electrical stimulation-induced analgesia.

Goal:  Understand the underlying mechanisms of different forms of electrical stimulation-induced analgesia including TENS and spinal cord stimulation (SCS). 

TENS applies electrical current to the skin for pain control and SCS applies electrical current to the dorsal columns through an implanted lead for pain control.  Our laboratory is currently examining the underlying mechanisms and ideal parameters for both TENS and SCS using animal models.  These studies include determining the underlying neurotransmitters and receptors involved in the analgesia, the tolerance and underlying mechanisms induced by TENS, and mechanisms to improve efficacy of TENS and SCS by developing both pharmacological and non-pharmacological treatment strategies.

SCS studies funded by Medtronic, Inc.  TENS studies funded by NIH.

Recent References:

Rakel B, Zimmerman MB, Geasland K, Embree J, Clark CR, Noiseux NO, Callaghan JJ, Herr K, Walsh D, Sluka KA.  Transcutaneous electrical nerve stimulation (TENS) for the control of pain during rehabilitation following total knee arthroplasty (TKA): A randomized, blinded, placebo-controlled trial.  Pain.  2014 Sep 27.

Vance CG, Dailey DL, Rakel VA, Sluka KA.  Using TENS for pain control: the state of the evidence. Pain Manag. 2014 May; 4(3): 197-209.

Sato KL, Johanek LM, Sanada LS, Sluka KA.  Spinal cord stimulation (SCS) improves decreased physical activity induced by nerve injury.  Behav Neurosci. 2014 Oct; 128(5): 625-32.

Role of ASICs in musculoskeletal pain.

Goal:  Understand the role of decreases in pH and activation of acid sensing ion channels (ASICs) in the development of inflammatory and non-inflammatory musculoskeletal pain.

These studies are aimed at understanding factors that initiate and maintain chronic painful conditions.  Our prior studies have shown that decreases in pH can induce chronic pain, ASICs are key players in the development of musculoskeletal pain, and that ASICs can modulate synovitis in arthritis.  These studies are therefore examining the role of ASICs on the nociceptors that innervate joint and muscle tissue for development in a variety of animal models of pain, as well as the role of ASICs on synoviocytes that line joint tissue for the control of inflammation.

Funded by AR053509 

Recent References:

Sluka KA, Rasmussen LA, Edgar MM, O'Donnell JM, Walder RY, Kolker SJ, Boyle DL, Firestein GS.  Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis.  Arthritis Rheum. 2013 May;65(5):1194-201. doi: 10.1002/art.37862.

Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA.  Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation.  Pain. 2011 Oct;152(10):2348-56.

Gregory NS, Brito RG, Fusaro MC, Sluka KA.  ASIC3 is required for development of fatigue-induced hyperalgesia. 

Gong W, Kolker SJ, Usachev Y, Walder RY, Boyle DL, Firestein GS, Sluka KA.  Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium.   Arthritis Res Ther. 2014 Jun 12; 16(3):R121. doi: 10.1186/ar4577.