Eric B. Taylor, PhD

Portrait
Assistant Professor of Biochemistry

Contact Information

Office: 3316 PBDB
Iowa City, 52242
Phone: 319-384-4098

Lab: PBDB
Iowa City, 52242
Phone: 319-335-7500

Education

BS, Exercise Physiology, Brigham Young University
PhD, Physiology, Brigham Young University

Post Doctoral Fellow, Joslin Diabetes Center and Harvard Medical School
Post Doctoral Fellow, University of Utah School of Medicine

Education/Training Program Affiliations

Department of Biochemistry PhD, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Medical Scientist Training Program

Center, Program and Institute Affiliations

Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, Holden Comprehensive Cancer Center, UI Obesity Research and Education Initiative

Research Summary

Mitochondria are the engine of eukaryotic cellular metabolism. Mitochondria sustain cells with a continuous supply of ATP, replenish metabolic intermediates, and coordinate metabolic flux with numerous aspects of cellular biology. Accordingly, mitochondrial dysfunction is a root cause of devastating diseases, including cancer, neurodegeneration, and diabetes. The Taylor Lab is interested in the molecular mechanisms regulating mitochondrial function and their relationship to disease. Our research program is multidisciplinary, utilizing genetic, biochemical, cellular, and physiological experimental approaches. We have additional interest in problems related to skeletal muscle function and diabetes. Our current research projects focus on novel proteins important for mitochondrial function. The first is on VMS1, a protein that recruits components of the ubiquitin proteasome system to stressed mitochondria to extract damaged proteins for presentation to the proteasome, thereby maintaining mitochondrial protein quality. Thus, VMS1 may be relevant to any disease involving progressive mitochondrial failure. The second is on the mitochondrial pyruvate carrier (MPC), which Dr. Taylor recently co-discovered. Mitochondrial pyruvate uptake is critical for ATP production by the TCA cycle and for generating the synthetic intermediates supporting fat, protein, and carbohydrate metabolism. Therefore, MPC function is essential for normal physiology and its disruption causes diverse and severe metabolic abnormalities. We are interested in discovering the mechanisms regulating the function of the MPC molecule.

Publications

Rauckhorst, A., Taylor, E. (2016). Mitochondrial Pyruvate Carrier Function and Cancer Metabolism. Curr Opin Genet Dev., 4(38), 102-109.
[PubMed]

Rauckhorst, A. J., Taylor, E. B. (2016). Mitochondrial pyruvate carrier function and cancer metabolism.. Current opinion in genetics & development, 38, 102-109. DOI: 10.1016/j.gde.2016.05.003.
[PubMed]

Gray, L. R., Rauckhorst, A. J. & Taylor, E. B. (2016). A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity.. The Journal of biological chemistry, 291(14), 7409-17. DOI: 10.1074/jbc.M115.711663.
[PubMed]

Greenhill, C. (2015). Diabetes: Important Role for MPC Complex in Hepatic Gluconeogenesis. Nature Reviews Endocrinology, 11(11), 629.
[PubMed]

Gray, L. R., Sultana, M. R., Rauckhorst, A. J., Oonthonpan, L., Tompkins, S. C., Sharma, A., Fu, X., Miao, R., Pewa, A. D., Brown, K. S., Lane, E. E., Dohlman, A., Zepeda-Orozco, D., Xie, J., Rutter, J., Norris, A. W., Cox, J. E., Burgess, S. C., Potthoff, M. J. & Taylor, E. B. (2015). Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.. Cell metabolism. DOI: 10.1016/j.cmet.2015.07.027.
[PubMed]

Gray, L., Tompkins, S. & Taylor, E. (2014). Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci, 71(14), 2577-604. DOI: 10.1007/s00018-013-1539-2.
[PubMed]

Gray, L. R., Tompkins, S. C. & Taylor, E. B. (2013). Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci.
[PubMed]

Halestrap, A. (2012). The Mitochondrial Pyruvate Carrier: Has it Been Unearthed At Last?. Cell Metabolism, 16(2), 141-143.
[PubMed]

Divakaruni, A., Murphy, A. (2012). A Mitochrondrial Mystery, Solved.. Science, 337(6090), 41-43.
[PubMed]

Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y. C., Cox, J. E., Cardon, C. M., Van Vranken, J. G., Dephoure, N., Redin, C., Boudina, S., Gygi, S. P., Brivet, M., Thummel, C. S. & Rutter, J. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science (New York, N.Y.), 337(6090), 96-100.
[PubMed]

Chen, Y. C., Taylor, E. B., Dephoure, N., Heo, J. M., Tonhato, A., Papandreou, I., Nath, N., Denko, N. C., Gygi, S. P. & Rutter, J. (2012). Identification of a protein mediating respiratory supercomplex stability. Cell metabolism, 15(3), 348-60.
[PubMed]

Taylor, E. B., Rutter, J. (2011). Mitochondrial quality control by the ubiquitin-proteasome system. Biochemical Society transactions, 39(5), 1509-13.
[PubMed]

Treebak, J. T., Taylor, E. B., Witczak, C. A., An, D., Toyoda, T., Koh, H. J., Xie, J., Feener, E. P., Wojtaszewski, J. F., Hirshman, M. F. & Goodyear, L. J. (2010). Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. American journal of physiology. Cell physiology, 298(2), C377-85.
[PubMed]

An, D., Toyoda, T., Taylor, E. B., Yu, H., Fujii, N., Hirshman, M. F. & Goodyear, L. J. (2010). TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes, 59(6), 1358-65.
[PubMed]

Heo, J. M., Livnat-Levanon, N., Taylor, E. B., Jones, K. T., Dephoure, N., Ring, J., Xie, J., Brodsky, J. L., Madeo, F., Gygi, S. P., Ashrafi, K., Glickman, M. H. & Rutter, J. (2010). A stress-responsive system for mitochondrial protein degradation. Molecular cell, 40(3), 465-80.
[PubMed]

Taylor, E. B., An, D., Kramer, H. F., Yu, H., Fujii, N. L., Roeckl, K. S., Bowles, N., Hirshman, M. F., Xie, J., Feener, E. P. & Goodyear, L. J. (2008). Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. The Journal of biological chemistry, 283(15), 9787-96.
[PubMed]

Kramer, H. F., Taylor, E. B., Witczak, C. A., Fujii, N., Hirshman, M. F. & Goodyear, L. J. (2007). Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle. Diabetes, 56(12), 2854-62.
[PubMed]

Taylor, E. B., Goodyear, L. J. (2007). Targeting skeletal muscle AMP-activated protein kinase to treat type 2 diabetes. Current diabetes reports, 7(6), 399-401.
[PubMed]

Taylor, E. B., Ellingson, W. J., Lamb, J. D., Chesser, D. G., Compton, C. L. & Winder, W. W. (2006). Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate. American journal of physiology. Endocrinology and metabolism, 290(4), E661-9.
[PubMed]

Kramer, H. F., Witczak, C. A., Fujii, N., Jessen, N., Taylor, E. B., Arnolds, D. E., Sakamoto, K., Hirshman, M. F. & Goodyear, L. J. (2006). Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes, 55(7), 2067-76.
[PubMed]

Kramer, H. F., Witczak, C. A., Taylor, E. B., Fujii, N., Hirshman, M. F. & Goodyear, L. J. (2006). AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. The Journal of biological chemistry, 281(42), 31478-85.
[PubMed]

Winder, W. W., Taylor, E. B. & Thomson, D. M. (2006). Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Medicine and science in sports and exercise, 38(11), 1945-9.
[PubMed]

Taylor, E. B., Ellingson, W. J., Lamb, J. D., Chesser, D. G. & Winder, W. W. (2005). Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. American journal of physiology. Endocrinology and metabolism, 288(6), E1055-61.
[PubMed]

Taylor, E. B., Lamb, J. D., Hurst, R. W., Chesser, D. G., Ellingson, W. J., Greenwood, L. J., Porter, B. B., Herway, S. T. & Winder, W. W. (2005). Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: effects of time and intensity. American journal of physiology. Endocrinology and metabolism, 289(6), E960-8.
[PubMed]

Hurst, D., Taylor, E. B., Cline, T. D., Greenwood, L. J., Compton, C. L., Lamb, J. D. & Winder, W. W. (2005). AMP-activated protein kinase kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance-trained rats. American journal of physiology. Endocrinology and metabolism, 289(4), E710-5.
[PubMed]

Taylor, E. B., Hurst, D., Greenwood, L. J., Lamb, J. D., Cline, T. D., Sudweeks, S. N. & Winder, W. W. (2004). Endurance training increases LKB1 and MO25 protein but not AMP-activated protein kinase kinase activity in skeletal muscle. American journal of physiology. Endocrinology and metabolism, 287(6), E1082-9.
[PubMed]

Winder, W. W., Hardie, D. G., Mustard, K. J., Greenwood, L. J., Paxton, B. E., Park, S. H., Rubink, D. S. & Taylor, E. B. (2003). Long-term regulation of AMP-activated protein kinase and acetyl-CoA carboxylase in skeletal muscle. Biochemical Society transactions, 31(Pt 1), 182-5.
[PubMed]