Logo for University of Iowa Health Care This logo represents the University of Iowa Health Care


Click on a name below to learn more about potential mentors.

Peggy Nopoulos, MD, Professor and Chair of Psychiatry; Professor of Neurology and Pediatrics

INSPIRE Co-Director; Research interests: Neuroimaging, Brain Development
Dr. Nopoulos’s research focuses on the study of brain and behavior.  Specifically, she studies aspects of understanding normal healthy brain such as differences in brain structure and function between the sexes as well as understanding how the brain changes with development through adolescence. In regard to the study of disease, her lab focuses on research into brain structure and function in two main areas:  prematurity, and neurogenetics with focus on triplet repeat disorders (Huntington’s Disease and Myotonic Dystrophy). This is done using state of the art neuroimaging techniques, specifically Magnetic Resonance Imaging (MRI) which includes structural imaging, Diffusion Tensor Imaging, resting state fMRI, and novel sequences such as T1rho (pH imaging).  



Hanna Stevens, MD, PhD, Associate Professor of Psychiatry

INSPIRE Co-Director; Research interests: Molecular and Developmental Psychiatry, Neurobiology
Dr. Stevens leads the Psychiatry and Early Neurobiological Development Lab (PENDL) in the Iowa Neuroscience Institute. The lab seeks to understand molecular and cellular aspects of early brain development and their relevance to psychiatric disorders. They are particularly interested in understanding how prenatal stress, environmental exposures, and genes that play a role in early development have an impact on childhood behavior and act as risk factors for multiple psychiatric disorders. They use mostly basic science techniques including molecular, cellular, neuroanatomical, and behavioral assessment of mouse models. Specific mechanisms currently being examined in the lab are embryonic neuronal migration, telomere biology and oxidative stress, embryonic neurogenesis, fibroblast growth factor signaling, and branched chain amino acid metabolism. 



John Wemmie, MD, PhD, Professor of Psychiatry, Molecular Physiology and Biophysics, and Neurosurgery

INSPIRE Co-Director; Research interest: Molecular Genetics
Dr. Wemmie is interested in the role of brain pH and acid-sensing ion channels in brain function and behavior. This work has led to the discovery of critical roles for brain pH in synaptic plasticity, anxiety, and depression-related behaviors in mice. Current projects include investigating the synaptic mechanisms for acid-sensing ion channel action and also translating these discoveries to human behavior and brain function. For example, his laboratory is using non-invasive pH-sensitive magnetic resonance imaging to investigate the roles of brain pH in psychiatric illnesses such as panic disorder and bipolar affective disorder.




Ted Abel, PhD, Director-Iowa Neuroscience Institute, Professor of Molecular Physiology and Biophysics

Research interest: Molecular Basis of Neurodevelopmental and Psychiatric Disorders
The primary focus of research in the Abel lab is to understand the cellular and molecular mechanisms of long-term memory storage with a focus on the mammalian hippocampus. One of the hallmarks of long-term memory storage is that it requires the synthesis of new genes and new proteins, which act to alter the strength of synaptic connections within appropriate neuronal circuits in the brain. How are the various signals acting on a neuron integrated to give rise to appropriate changes in gene expression? How are changes in gene expression maintained to sustain memories for days, months and even years? What role does sleep play in memory storage? How is hippocampal function altered in mouse models of psychiatric and neurodevelopmental disorders?



Georgina Aldridge, MD, PhD, Assistant Professor of Neurology

Dr. Georgina Aldridge is a neurologist and neuroscientist whose specializes in treating and diagnosing patients with cognitive disorders, including those with Lewy Body dementia and Parkinson's disease dementia. In these patients, the protein alpha-synuclein aggregates, leading to severe multi-system symptoms, including hallucinations, loss of smell, dementia, imbalance, fluctuating confusion, and anxiety/depression. The main goal of the Aldridge laboratory is to understand the role that pathology and protein misfolding in the cortex plays in the development of these symptoms. Aldridge and her team use 2-photon microscopy to image neuronal structure (dendritic spines, dendrites, and axons) and function (calcium imaging) over time in living mice to evaluate how alpha-synuclein and other proteins involved in neurodegenerative conditions lead to changes in cortical function.  




Joseph Barrash, PhD, Professor of Neurology and Psychological and Brain Sciences

The primary interest in the Barrash Lab concerns the nature of personality disturbances consequent to development of brain disorders, and issues regarding the assessment of acquired personality disturbances (APD). The method employs the Iowa Scales of Personality Change (ISPC) to obtain ratings of patients from family members with identified neurological conditions. Recent and current projects have investigated APD associated with damage to prefrontal cortex or associated with specific conditions such as behavioral variant frontotemporal dementia, CVA, amyotrophic lateral sclerosis, tumors and traumatic brain injury, as well as personality changes associated with normal aging and their functionalconsequences. Ongoing investigation also aims to identify and validate specific subtypes of personality disturbance resulting from brain damage.




Aaron Boes, MD, PhD, Associate Professor of Neurology, Psychiatry, and Pediatrics

Research in the Boes Lab is at the interface of neuroimaging and noninvasive brain stimulation. The lab uses multi-modal neuroimaging techniques to better understand brain function at a macroscopic network level, and how network dysfunction contributes to clinical symptoms, including symptoms from focal brain lesions. The ultimate goal is to use advanced neuroimaging approaches to guide treatment using noninvasive brain stimulation, including transcranial magnetic stimulation (TMS). We believe there is tremendous therapeutic potential in the combined use of advanced imaging to detect dysfunctional networks coupled with noninvasive brain stimulation to modulate these networks in a targeted way, which aligns with Dr. Boes's clinical role directing the Noninvasive Brain Stimulation Clinical Program.





Ryan Boudreau, PhD, Associate Professor of Internal Medicine

The Boudreau Lab is currently investigating the role of endogenously-encoded microRNAs and novel micropeptides in Parkinson’s disease (PD) pathogenesis in mice. These projects incorporate a breadth of techniques, including viral-based (AAV) overexpression and inhibition (RNAi) of microRNAs and micropeptides in vivo, generation and characterization of CRISPR-derived knockout mice, and behavioral and neuropathological phenotyping in mice. Overall, the research program is balanced in basic and translational studies, wet-lab and computational methods, and resource- and hypothesis-driven research. This framework promotes multi-disciplinary and collaborative science, offering an excellent environment to foster the growth of current and future trainees, as well as make important biomedical discoveries that may translate to the clinical setting.




Amy Conrad, PhD, Assistant Professor of Pediatrics

Dr. Conrad is a psychologist who works clinically with children who have learning disorders. Her research focuses on the neural development in children with isolated cleft of the lip and/or palate, with special interest in language and reading development. The work has typically been with children in elementary school and junior high, using fMRI task-based designs, but now is expanding to earlier development (neonatal) and the potential use of fNIRS in this population.





William Coryell, MD, Professor of Psychiatry 

Research interests: Clinical trials and Outcomes 
Dr. Coryell is spearheading the Iowa portion of a larger national study to examine the long-term effectiveness of an experimental depression medication called ketamine. Coryell is measuring the impact of a version of ketamine, called esketamine, on people with major depressive disorder. While studies have shown that ketamine helps in the short term, this will be the first study to examine the long-term effects of the medication on depression.





Rory Fisher, PhD, Professor of Neuroscience and Pharmacology and Internal Medicine

Research in the Fisher lab focuses on the molecular/cellular biology and signaling/physiological roles of Regulator of G protein signaling (RGS) proteins. RGS proteins function as essential negative regulators of G protein-coupled receptor signaling by virtue of their ability to terminate heterotrimeric G protein signaling. Our recent studies have determined that one member of this family, RGS6, plays a critical role in numerous neuropsychiatric diseases including anxiety/depression, Parkinson’s, and alcohol seeking/dependence, as well as in cancer and heart disease. While mice lacking RGS6 survive, they exhibit remarkably diverse phenotypes owing to the central role of G protein signaling in biology and the ability of RGS6 to signal by entirely novel G protein-independent mechanisms. Together with a cross-disciplinary team of collaborators at the University of Iowa we employ a breadth of techniques in these projects, including CRISPR-generated mice, mouse behavioral analyses, brain region-specific viral manipulation of RGS protein expression, optogenetics, as well as molecular genetic and cellular biological approaches.



Joel Geerling, MD, PhD, Assistant Professor of Neurology

Deep in the brain, various circuits are constantly working to keep you alive – waking you from sleep, regulating your blood pressure, making you thirsty, and so on. Many age-related diseases affecting the brain, including Dementia with Lewy Bodies and Alzheimer’s Disease, deteriorate of some of these circuits. Unfortunately, our knowledge of the neurons and wiring diagrams in these circuits remains primitive, severely limiting the development of elective treatments for symptoms like insomnia, incontinence, drops in blood pressure, lack of thirst, and other age-related neural circuit disorders. To better understand neural circuits responsible for many of these symptoms, the Geerling Laboratory uses cutting-edge neuroscience tools and genetic targeting to map out new types of neurons and circuit connectivity, and then probe each connection for elects on physiology (blood pressure, breathing, bladder control) and behavior (sleep/wake, drinking/eating, motivation/attention). We have identified neurons and connections that regulate sodium appetite, body temperature, hunger, and continence, and our primary focus now is the arousal system, which maintains conscious wakefulness.



Beng Choon Ho, MD, Professor of Psychiatry

 Research interest: Neuroimaging, Brain Development and Drug Use







Karin Hoth, PhD, Associate Professor of Psychiatry

Dr. Hoth’s research focuses on understanding physiological mechanisms that impact brain structure and function in adults with chronic cardiopulmonary diseases. Research in the Hoth lab is highly interdisciplinary bringing together experts in neuroscience, internal medicine, radiology, and human physiology. We are currently conducting a NIH/NHLBI funded project utilizing behavioral measures and imaging techniques (neuroimaging, chest CT, vascular ultrasound) to examine the link between specific changes in lung and vascular physiology and the brain targeting smokers with early chronic obstructive pulmonary disease (COPD). Dr. Hoth is also involved in several other projects involving cognitive assessment including work with the multi-site COPD Gene study, work with patients with interstitial lung disease, and research on coronary artery disease.




Rainbo Hultman, PhD, Assistant Professor of Molecular Physiology and Biophysics

A primary difficulty in developing therapeutics for brain disorders is that the underlying etiological mechanisms are not well understood. We have made recent breakthroughs in our understanding of the relationship between electrical activity in the brain and behavior, which is promising for shedding light on these mechanisms. The Hultman lab studies networks of electrical activity in the brain using pre-clinical rodent models of disease and is working to identify the cellular and molecular factors that contribute to the organization of such networks. Our overarching goal is to promote the development of precision medicine (i.e. therapeutics targeted to specific individuals) by identifying therapeutic targets that promote healthy brain electrical network activity. Two brain disorders of primary focus in the lab include migraine and major depressive disorder. By probing the underlying electrical networks of these disorders and identifying molecular drivers of such activity, we will be better positioned to develop more elective treatments for these debilitating disorders.




Hans Johnson, PhD, Associate Professor of Psychiatry and Electrical and Computer Engineering

Dr. Johnson leads the Scalable Informatics for Neuroscience, Processing and Software Engineering (SINAPSE) group. SINAPSE is an interdisciplinary team of computer scientists, software engineers, and medical investigators who develop computational tools for the analysis and visualization of medical image data. The purpose of the group is to provide the infrastructure and environment for the development of computational algorithms and open-source technologies, and then oversee the training and dissemination of these tools to the medical research community.





 Samuel Kuperman, MD, Professor of Psychiatry and Pediatrics

Research interest: Genetics
Despite strong evidence for a genetic contribution to Tourette disorder (TD), progress in the identification of specific risk genes has been, until quite recently, halting. However, building upon NIMH's support for our initial efforts to ascertain TD trios as well as our highly successful experience with genomic investigations of autism spectrum disorders (ASD), we have now demonstrated a clear path forward for reliable, systematic gene discovery in TD. Our TD work, recently published in the journal Neuron, identified one high confidence and three probable novel TD risk genes collectively pointing to neurite outgrowth and axon pathfinding as potential pathological mechanisms. More importantly, however, our findings demonstrate for the first time, a clear excess of de novo damaging point mutations in individuals with TD, with effect sizes that rival our recent findings in ASD. This discovery strongly suggests that sequencing of larger cohorts will reliably and rapidly lead to the identification of many more highly penetrant risk genes. Moreover, our recent work suggests an increased yield of highly penetrant damaging de novo variants in probands who are affected both with TD and obsessive compulsive disorder or attention deficit hyperactivity disorder, suggesting that our efforts may well also offer avenues to study the overlap in genetic risks for these often-comorbid conditions.



Ryan T. LaLumiere, PhD, Associate Professor of Psychological and Brain Sciences

The LaLumiere Lab focuses on two related areas: The neurobiology of learning and memory and the neurobiology of drug addiction. In the first line of research, we focus on the mechanisms that underlie memory consolidation in rodents, with particular attention given to how the amygdala modulates such processes. In our approach to this issue, we target specific pathways connecting brain regions in combination with a variety of learning tasks in order to dissociate the roles of the pathways in different kinds of learning. For our drug addiction work, we take a learning-and-memory approach to understanding the neural mechanisms involved in drug-seeking behavior in rodents. For this work, rats undergo drug self-administration, followed by different paradigms that allow the animal to demonstrate its drug-seeking behavior. In particular, we are interested in understanding those systems, largely based in prefrontal cortex, that inhibit drug seeking..




Doug Langbehn, MD, PhD, Professor of Psychiatry and Biostatistics

Research interest: Biostatistics
Dr. Langbehn is a board-certified psychiatrist turned biostatistician. He is broadly interested in research design, analysis, and interpretation. More specifically, his goal is to use his dual expertise to match appropriate statistical design and analysis methodologies to specific goals in brain disease research. Over the past 16 years, he has focused on a variety of projects related to Huntington's Disease. These have included structural and functional brain imaging analysis, phenotyping and quantitative modeling of primary and secondary genetic elects, biomarker assay development, clinical trial design, and clinical descriptive research based on neuropsychology, psychiatric, and movement disorder measurements. While still active in these areas, his interests have recently broadened to include the statistical genetic and other etiologic modeling of both autism and familial substance use disorders.




Vincent Magnotta, PhD, Professor of Radiology, Psychiatry, and Biomedical Engineering

Research interest: Neuroimaging
The Magnotta Lab is currently focusing on the development of quantitative magnetic resonance imaging techniques that are sensitive to brain metabolism. Currently we are focusing on T1rho, CEST, and MR spectroscopic based techniques. Using these techniques coupled with other quantitative imaging markers (e.g. T1 and T2 relaxation measures) we are exploring metabolic changes associated with several psychiatric (schizophrenia, bipolar disorder) and neurological disorders (Huntington’s disease, Alzheimer’s disease). In addition, we are exploring how metabolism changes with symptoms and disease progression. Future work will accelerate these imaging measures allowing them to assess functional changes in the brain.




 Merry Mani, PhD, Assistant Professor of Radiology

Research in the Mani lab is aimed at the development of new MRI-based neuroimaging technology that enables the detection of neurological disorders at early stages of disease progression. Changes in the tissue microstructure using dillusion MRI is being explored as an early biomarker. Novel MRI pulse sequences combined with advanced reconstruction and analysis methods are used to synergistically improve the sensitivity of neuroimaging methods. Currently, these techniques are being applied for the studies of bipolar disorder, Huntington’s disease and major depressive disorder.





Catherine Marcinkiewcz, PhD, Assistant Professor of Neuroscience and Phrmacology

Dr. Marcinkiewcz's laboratory is focused on delineating the role of serotonin in complex brain disorders such as alcohol dependence, depression, and Alzheimer's disease. Serotonin neurons are mainly localized to the raphe nuclei of the brainstem, but their axons are widely distributed throughout the nervous system and have a ubiquitous role in physiological processes and behavior. Adding to this complexity is the diverse array of high-affinity receptors that bind serotonin, each having distinct elects on behavior. The lab is using a variety of intersectional tools for targeting, manipulating and monitoring the activity of discrete serotonin circuits in order to gain insight into how these circuits are disrupted in psychiatric disorders. We are also investigating the role of enteric serotonin in brain disorders such as autism and generalized anxiety disorder. The ultimate goal of this work is to identify new therapeutic targets for these often-intractable conditions.





Jacob Michaelson, PhD, Associate Professor of Psychiatry and Biomedical Engineering

Research interest: Genetics, Informatics
The Michaelson Lab focuses on computational psychiatry and genomics. We are interested in the use of computing to improve the understanding, diagnosis, monitoring, and treatment of neuropsychiatric and neurodevelopmental conditions. We use a variety of data modalities: genomic, metabolic, pharmacological, medical record, imaging, audio recording, textual, and body movement to build predictive models that assist us in our mission of improving mental health through computing. We have extramurally supported research programs involving computational methodology, animal models, and human subjects research.




David Moser, PhD, Professor of Psychiatry

Dr. Moser’s research interest involves finding better ways to identify those individuals at greatest risk for vascular cognitive decline and, ultimately, finding ways to prevent or at least attenuate this process. A secondary line of research involves the assessment of decisional capacity for informed consent in various vulnerable populations, determining what factors (e.g. cognitive dysfunction, mental illness) are most likely to impair this capacity, and finding new ways to improve this capacity in those who are unable to make informed decisions on their own behalf.





Nandakumar Narayanan, MD, PhD, Associate Professor of Neurology

Our mission is to map the neural circuits that malfunction in brain diseases that impair higher order thinking. This data will help generate new and highly specific treatments for these disorders. How does dopamine affect cortical circuits involved in cognition? We study the influence of dopamine on prefrontal networks controlling cognitive behaviors such as timing and performance monitoring. We combine ensemble recording from populations of neurons in awake, behaving animals with specific manipulations using techniques such as optogenetic stimulation, targeted pharmacology, or selective genetic disruption with RNA interference. How does the prefrontal cortex control downstream brain areas? The prefrontal cortex projects to brain areas such as the striatum and the subthalamic nucleus. These brain areas are involved cognitive processing, and we study how prefrontal projections to these brain areas control cognitive processing in these downstream brain areas. How can we protect and preserve circuits that malfunction in Parkinson's disease? Along with our collaborators, we study a variety of circuit-level and cellular processes in Parkinson's disease that lead to neurodegeneration and side-effects of current drugs for Parkinson's disease. This effort could lead to new and optimized treatments for Parkinson's disease.



Mark Niciu, MD, PhD, Assistant Professor of Psychiatry

The Niciu Lab is broadly interested in the pathophysiology and experimental therapeutics of major mood disorders, particularly glutamate and subanesthetic-dose ketamine in treatment resistant major depression. Another major aim is the identification, replication and dissemination of antidepressant response biomarkers. As an example, our group and others have observed that treatment-resistant depressed subjects with a family history of an alcohol use disorder in a first-degree relative have a greater and more sustained antidepressant response to ketamine. We are currently studying potential alcohol-sensitive multimodal, e.g. psychological, neurophysiological and neuroimaging, biomarkers to predict antidepressant response with greater sensitivity and specificity than family history alone. On the translational front, we use human-induced pluripotent stem cell (hiPSC)-based models, i.e. cortical-like spheroids, to study genetic, molecular and cellular mechanisms of disease and pharmacological response to racemic ketamine, bioactive ketamine metabolites and other compounds in the future.




Thomas Nickl-Jockschat, MD, Associate Professor of Psychiatry

The Nickl-Jockschat lab aims to characterize brain structural changes in psychiatric disorders, such as schizophrenia or autism spectrum disorders. As shown previously, these neuroanatomical anomalies do not appear to be mere epiphenomena, but closely related to the actual symptoms level of these disorders. Thus, a better understanding of these brain structural changes and their molecular and environmental causes might decisively help to develop not only a better understanding, but also new therapeutic approaches for the respective disorders. Given the complex etiopathogenesis, the Nickl-Jockschat lab employs a wide range of methods, including human and animal imaging and advanced brain mapping techniques, including the use of cutting-edge gene expression atlases. A special focus lies upon a joint analysis of these various modalities.




Krystal Parker, PhD, Assistant Professor of Psychiatry

The primary goal of the Parker Lab is to characterize cerebellar neural circuitry with the goal of improving treatments for complex and devastating cognitive and mood abnormalities that are common in neuropsychiatric diseases. Our research is highly translational as we interrogate cerebellar circuitry in animals using electrophysiology, optogenetics, and pharmacology and compare these data to EEG paired with cerebellar TMS administered in clinical populations. The cerebellum contains more neurons than the rest of the brain combined and although it is most famous for its role in motor control, its contribution to cognitive and affective processes is less clear. Schizophrenia, autism, Parkinson’s disease, depression, and bipolar disorder are all examples of disorders involving cerebellar abnormalities that are characterized in part by impairments in cognition and mood. Using cerebellar modulation, we hope to capitalize on the cerebellum’s diffuse connections with the rest of the brain to identify and restore patterns of neural activity that are aberrant in disease.




Robert A. Philibert, MD, PhD, Professor of Psychiatry

The focus of the research efforts by Dr. Philibert's academic research group and its commercial affiliate, Behavioral Diagnostics LLC, is epigenetics. Specifically, we have developed and are commercializing proprietary epigenetic tools for the assessment and treatment of tobacco and alcohol consumption. In addition, we are in the process of translating additional tools for the assessment and treatment of other forms of substance use as well as general medical diagnostics for disorders such as coronary heart disease. The academic group is the caretaker for several large longitudinally characterized, biologically informed cohorts and possesses state of the art equipment for many aspects of molecular inquiry.





Laura Ponto, PhD, Professor of Radiology and Pharmaceutical Science Experimental Therapeutics

Dr. Ponto and her team examine the correspondence between arterial spin labeling, an emerging MRI-based technique to measure cerebral blood flow, and the “gold standard” technique, [15O]Water positron emission tomography imaging. The goal is to understand the strengths and limitations of the new MRI-based method. Measurements of cerebral blood flow are important to our understanding of normal and pathological brain function.






Jason J. Radley, PhD, Associate Professor of Psychological and Brain Sciences

Threats to safety, whether real or perceived, activate a set of physiological, behavioral, and endocrine responses that promote effective coping. Known collectively as stress responses, these have adaptive value for the individual in the short term. However, when stress responses are activated over a sustained period, they can initiate the onset of or worsen a variety of psychiatric and systemic disease states. Our research program uses anatomical, behavioral, neuroendocrine, optogenetic approaches to understand the neural circuitry and mechanisms that regulate stress responses in rodents, and how these systems malfunction through the course of chronic exposure, as a greater knowledge of these pathways and how they malfunction is needed to minimize or prevent the adverse effects of stress on health and disease.





Ann Sadler, PhD, RN, Professor of Psychiatry 

Dr. Sadler’s research interests include risk factors for violence in military environments and subsequent health consequences (including gynecologic, mental health and health care utilization), OEF/OIF/OND service-women’s risk factors for sexual assault, TBI and PTSD during deployment, post-deployment readjustment, and on-line and shared decision making interventions to improve access to VA care. She is a site lead for the Women’s Practice Based Research Network.





Jordan Schultz, PharmD, Assistant Professor of Pharmacy Practice and Science, Psychiatry, and Neurology

The Schultz Lab engages in clinical and translational research involving patients with neurodegenerative diseases, with a focus on Huntington’s disease. We take an epidemiological approach to identify environmental factors, including medications, that may have an effect on disease progression. Using this information, our lab uses novel neuroimaging techniques to test specific hypotheses to better understand the mechanisms underlying neurodegeneration. The Schultz Lab is also well-positioned to perform clinical trials on identified interventions.





Val Sheffield, MD, PhD, Professor of Ophthalmology and Visual Sciences and Pediatrics

The Sheffield Lab is interested in identifying and understanding the function of genes which cause a variety of human disorders. Our research efforts have focused on the molecular genetics of monogenic disorders, as well as polygenic and multifactorial disorders. Our research efforts have resulted in the mapping of many different disease loci. In addition, we have used positional cloning methods to identify genes involved in a number of different diseases including hereditary blindness and deafness. Efforts are currently underway to use positional cloning strategies to identify additional disease-causing genes. Complex genetic disorders currently under investigation in the laboratory include hypertension, obesity, congenital heart disease and autism. In addition, we have worked on developing and improving techniques for disease mapping, positional cloning, and mutation detection. We have also had an active role in the human genome project and the rat genome project.




Gen Shinozaki, MD, Associate Professor of Psychiatry and Neurosurgery

The Shinozaki Lab aims to study the molecular influence of environmental factors such as trauma and stress on individual susceptibility to psychiatric conditions including posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) using an epigenetic/genetic approach.







Daniel Tranel, PhD, Professor of Neurology and Psychological and Brain Sciences

Research in the Tranel laboratory is aimed at understanding brain-behavior relationships in humans, at systems level. Two main approaches are used: (1) the lesion method, in which brain damaged patients are studied with neuropsychological procedures to determine how certain lesion sites are related to certain cognitive and behavioral deficits; and (2) functional imaging, including PET and fMRI, in which the brain activation in normal subjects is measured while the subjects are performing various tasks. Specific topics that Tranel is working on currently include brain networks; retrieval of conceptual knowledge; retrieval of words and lexical knowledge; emotion and decision-making; nonconscious processing; acquired disorders of social conduct; memory; and psychophysiology. Tranel's research has been continuously funded for more than three decades.




Carolyn Turvey, PhD, Professor of Psychological and Brain Sciences

Dr. Turvey has developed an intervention to address coping with irreversible functional decline in elderly people suffering chronic lung or heart disease. She also has an active research interest in telemedicine and e-health, exploring the use of videoconferencing to improve access to care, and the use of patient portals to improve treatment of depression.






Michelle Voss, PhD, Associate Professor of Psychiatry and Epidemiology

Research in the Voss Lab examines the neurobiological mechanisms associated with cognitive aging and age-related neurological diseases, and how to effectively intervene for improved cognition and quality of life. One line of research focuses on determining the effects of physical activity and sedentary behavior on the brain and cognition across the lifespan. A parallel line of studies examines age-related individual differences in the neurobiological mechanisms of skill acquisition and associative memory. We also bring these two interests together by examining how physical activity affects learning and memory. We examine neural mechanisms using non-invasive neuroimaging techniques, such as structural and functional magnetic resonance imaging at MRRF.





Michael Welsh, MD, Professor of Neurology, Internal Medicine, Physiology and Biophysics, and Neurosurgery

The Welsh lab studies the molecular biology and physiology of changes in brain pH and the effect on acid sensing ion channels and neural function. They are particularly interested in understanding the bases of fear memory and how that memory might be altered to treat people with PTSD. The lab also studies the biology of cystic fibrosis (CF), a common lethal genetic disease, and developing new treatments. Cystic fibrosis is caused by mutations in the gene that encodes the CFTR anion channel. Welsh and his colleagues are learning how the CFTR anion channel is regulated and how mutations disrupt its function. They also focus on the pathogenesis of cystic fibrosis lung disease, learning how the loss of CFTR causes the bacterial airway infections and inflammation that destroy the lung. To test key hypotheses, they developed a porcine model of cystic fibrosis that develops all the hallmarks of the human disease. Their studies of this model are providing a new understanding of the disease and are aiding the development of novel therapies.




Jan Wessel, PhD, Associate Professor of Neurology and Psychological and Brain Sciences

The Wessel Lab is interested in how humans carry out and maintain goal-directed behaviors; specifically, we investigate how the cognitive system resolves challenges to this goal. Common examples of such challenges are unexpected events and action errors. We investigate the dynamic interplay between brain networks that subserve the monitoring of the external and internal environment, the evaluation of action outcomes, and the adaptation of ongoing behavior and cognition in the short and long term. To investigate these networks, we use a wide arsenal of human neuroscience methods (EEG, ECoG, Deep-brain stimulation, TMS, fMRI, computational modelling, autonomic measures). Furthermore, we study how pathological processes, brain lesions, and (ab)normal aging affect these networks.




Aislinn Williams, PhD, Assistant Professor of Psychiatry

The Williams lab is interested in understanding the molecular and cellular mechanisms by which genetic risk factors contribute to psychiatric disease from a developmental perspective. Our current projects focus on voltage-gated calcium channel genes, which have been linked to the risk of developing bipolar disorder, schizophrenia, depression, and autism. We use induced pluripotent stem cells and transgenic mouse models to study how calcium channel gene SNPs alter neuronal development, neural circuit function, and affective behavior. We employ a wide range of approaches, including molecular biology, live cell imaging, neuropathology, and animal behavioral assessments.





Virginia Willour, PhD, Associate Professor of Psychiatry

The primary goal of our laboratory is to identify genetic and epigenetic risk factors for suicidal behavior. Genetic epidemiological studies make it clear that suicidal behavior has a substantial heritable component. While there is evidence that this heritability is accounted for in part by a liability to mood disorder, other evidence suggests an independent heritable facet that may cut across multiple psychiatric disorders. With this in mind, we have been employing systematic genetic approaches including linkage analysis, genome-wide association study analysis, whole exome sequencing analysis, RNA-Seq analysis, and genome-wide methylation analysis, with the goal of identifying genomic regions, genes, and biological pathways influencing suicide risk. Our ongoing research has implicated a region on chromosome 2 (2p25) in the risk for suicidal behavior, and we are utilizing complementary genetic approaches, such as CRISPR-Cas9 based deletion mapping and bioinformatics assessment, to characterize the region and identify the functional elements conferring increased risk.




Samuel M. Young, PhD, Associate Professor of Anatomy and Cell Biology

The Young Lab is focused on the fundamental question– “How do synapses enable neuronal circuits to transmit a wide diversity of information?” Outcomes from our work will define the molecular principles that govern how synaptic properties drive neuronal circuit output which underpins organism behavior. These molecular principles uncovered may reveal the underlying causes of neuronal circuit dysregulation which results in neuropsychiatric or neurodegenerative diseases and have the potential to give rise to new therapeutic treatments.