David S. Weiss, PhD

Portrait
Professor of Microbiology and Immunology

Contact Information

Office
3-372 Bowen Science Building
51 Newton Rd
Iowa City, IA 52242
319-335-7785

Lab
3-303 Bowen Science Building
51 Newton Rd
Iowa City, IA 52242
319-335-7944

Education

BA, Biology, Swarthmore College
PhD, Microbiology, University of California, Berkeley
Postdoctoral Fellow, Microbiology, Max Planck Institute for Terrestrial Microbiology
Postdoctoral Fellow, Microbiology, Harvard Medical School

Education/Training Program Affiliations

Biomedical Science Program, Department of Microbiology Graduate Program, Interdisciplinary Graduate Program in Genetics

Center, Program and Institute Affiliations

Center for Biocatalysis and Bioprocessing

Research Summary

Background: We use bacteria as model organisms for addressing one of the most fundamental problems in cell biology -- How do cells divide? More specifically, we want to know how the division septum is formed and how its formation is regulated. Another objective is to understand how proteins are targeted to specific subcellular sites, especially how cell division proteins localize to the midcell.

Recent Results: We have approached these issues by screening for and/or characterizing new cell division proteins of Escherichia coli. This led to the identification of three new division proteins named DamX, DedD and RlpA. All three proteins contain a C-terminal "SPOR" domain that binds to the peptidoglycan cell wall. Surprisingly, we found that the SPOR domain alone is able to localize to the midcell. We think SPOR domains must be binding to a special peptidoglycan form (or structure) in the division septum. Figuring out what that structure is might provide important new insights concerning peptidoglycan synthesis during cell division.

Future Directions: The questions we are addressing now include: What sequences in SPOR domains specify septal localization? What is the unique feature of septal peptidoglycan that SPOR domains recognize? What role do the SPOR domain proteins play in cell division? What are the roles of SPOR domain proteins in other bacteria? In this regard, it is important to note that SPOR domain proteins are found in hundreds of bacterial species, including many important pathogens.

Significance: A better understanding of cell division and protein localization in E. coli might shed light on these processes in other organisms. In addition, our studies might lead to more knowledge-based approaches to developing new antibiotics.

Publications

Yahashiri, A., Jorgenson, M. A. & Weiss, D. S. (2017). The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division. J Bacteriol, 199(14), e00118-17. PMID: 28396350.

Ransom, E. M., Weiss, D. S. & Ellermeier, C. D. (2016). Use of mCherryOpt Fluorescent Protein in Clostridium difficile. Methods Mol Biol, 1476, 53-67. PMID: 27507333.

Yahashiri, A., Jorgenson, M. A. & Weiss, D. S. (2015). Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. Proc Natl Acad Sci U S A, 112(36), 11347-52. PMID: 26305949.

Weiss, D. S. (2015). Last but not least: new insights into how FtsN triggers constriction during Escherichia coli cell division. (Vols. 95). (6), pp. 903-9. Mol Microbiol. PMID: 25571948.

Ransom, E. M., Ellermeier, C. D. & Weiss, D. S. (2015). Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Appl Environ Microbiol, 81(5), 1652-60. PMID: 25527559.

Buchanan, B. B., Hall, J. A. & Weiss, D. S. (2015). Sydney Kustu 1943-2014. National Academy of Sciences.

Hall, J. A., Stedman, K. M. & Weiss, D. S. (2014). Obituary for Sydney Kustu. Microbe.

Jorgenson, M. A., Chen, Y., Yahashiri, A., Popham, D. L. & Weiss, D. S. (2014). The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol, 93(1), 113-28. PMID: 24806796.

Ransom, E. M., Williams, K. B., Weiss, D. S. & Ellermeier, C. D. (2014). Identification and characterization of a gene cluster required for proper rod shape, cell division, and pathogenesis in Clostridium difficile. J Bacteriol, 196(12), 2290-300. PMID: 24727226.

Söderström, B., Skoog, K., Blom, H., Weiss, D. S., von Heijne, G. & Daley, D. O. (2014). Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization. Mol Microbiol, 92(1), 1-9. PMID: 24506818.

Duncan, T. R., Yahashiri, A., Arends, S. J., Popham, D. L. & Weiss, D. S. (2013). Identification of SPOR domain amino acids important for septal localization, peptidoglycan binding, and a disulfide bond in the cell division protein FtsN. J Bacteriol, 195(23), 5308-15. PMID: 24056104.

Weiss, D. S. (2013). Escherichia coli shapeshifters. (Vols. 195). (11), pp. 2449-51. J Bacteriol. PMID: 23543717.

Williams, K. B., Yahashiri, A., Arends, S. J., Popham, D. L., Fowler, C. A. & Weiss, D. S. (2013). Nuclear Magnetic Resonance Solution Structure of the Peptidoglycan-Binding SPOR Domain from Escherichia coli DamX: Insights into Septal Localization. Biochemistry, 52(4), 627-39. PMID: 23290046.

Gode-Potratz, C. J., Kustusch, R. J., Breheny, P. J., Weiss, D. S. & McCarter, L. L. (2011). Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol, 79(1), 240-63. PMID: 21166906.

Arends, S. J., Williams, K., Scott, R. J., Rolong, S., Popham, D. L. & Weiss, D. S. (2010). Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. J Bacteriol, 192(1), 242-55. PMID: 19880599.

Arends, S. J., Kustusch, R. J. & Weiss, D. S. (2009). ATP-binding site lesions in FtsE impair cell division. J Bacteriol, 191(12), 3772-84. PMID: 19376877.

Tarry, M., Arends, S. J., Roversi, P., Piette, E., Sargent, F., Berks, B. C., Weiss, D. S. & Lea, S. M. (2009). The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol, 386(2), 504-19. PMID: 19135451.

Arends, S. J., Williams, K. B., Kustusch, R. J. & Weiss, D. S. (2007). Cell Division. In M. Ehrmann (Eds.) The Periplasm. ASM Press, Washington, DC.

Wang, S., Arends, S. J., Weiss, D. S. & Newman, E. B. (2005). A deficiency in S-adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12. Mol Microbiol, 58(3), 791-9. PMID: 16238627.

Wissel, M. C., Wendt, J. L., Mitchell, C. J. & Weiss, D. S. (2005). The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring. J Bacteriol, 187(1), 320-8. PMID: 15601716.

Weiss, D. S. (2004). Bacterial cell division and the septal ring. Mol Microbiol, 54(3), 588-97. PMID: 15491352.

Schmidt, K. L., Peterson, N. D., Kustusch, R. J., Wissel, M. C., Graham, B., Phillips, G. J. & Weiss, D. S. (2004). A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol, 186(3), 785-93. PMID: 14729705.

Arends, S. J., Weiss, D. S. (2004). Inhibiting cell division in Escherichia coli has little if any effect on gene expression. J Bacteriol, 186(3), 880-4. PMID: 14729718.

Wissel, M. C., Weiss, D. S. (2004). Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J Bacteriol, 186(2), 490-502. PMID: 14702319.

Eberhardt, C., Kuerschner, L. & Weiss, D. S. (2003). Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams. J Bacteriol, 185(13), 3726-34. PMID: 12813065.

Mercer, K. L., Weiss, D. S. (2002). The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol, 184(4), 904-12. PMID: 11807049.

Boyd, D., Weiss, D. S., Chen, J. C. & Beckwith, J. (2000). Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J Bacteriol, 182(3), 842-7. PMID: 10633125.

Weiss, D. S., Chen, J. C., Ghigo, J. M., Boyd, D. & Beckwith, J. (1999). Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol, 181(2), 508-20. PMID: 9882665.

Ghigo, J. M., Weiss, D. S., Chen, J. C., Yarrow, J. C. & Beckwith, J. (1999). Localization of FtsL to the Escherichia coli septal ring. Mol Microbiol, 31(2), 725-37. PMID: 10027987.

Chen, J. C., Weiss, D. S., Ghigo, J. M. & Beckwith, J. (1999). Septal localization of FtsQ, an essential cell division protein in Escherichia coli. J Bacteriol, 181(2), 521-30. PMID: 9882666.

Guzman, L. M., Weiss, D. S. & Beckwith, J. (1997). Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli. J Bacteriol, 179(16), 5094-103. PMID: 9260951.

Weiss, D. S., Pogliano, K., Carson, M., Guzman, L. M., Fraipont, C., Nguyen-Distèche, M., Losick, R. & Beckwith, J. (1997). Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol Microbiol, 25(4), 671-81. PMID: 9379897.

Pogliano, J., Pogliano, K., Weiss, D. S., Losick, R. & Beckwith, J. (1997). Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci U S A, 94(2), 559-64. PMID: 9012823.

North, A. K., Weiss, D. S., Suzuki, H., Flashner, Y. & Kustu, S. (1996). Repressor forms of the enhancer-binding protein NrtC: some fail in coupling ATP hydrolysis to open complex formation by sigma 54-holoenzyme. J Mol Biol, 260(3), 317-31. PMID: 8757796.

Hungerer, C., Weiss, D. S., Thauer, R. K. & Jahn, D. (1996). The hemA gene encoding glutamyl-tRNA reductase from the archaeon Methanobacterium thermoautotrophicum strain Marburg. Bioorg Med Chem, 4(7), 1089-95. PMID: 8831980.

Flashner, Y., Weiss, D. S., Keener, J. & Kustu, S. (1995). Constitutive forms of the enhancer-binding protein NtrC: evidence that essential oligomerization determinants lie in the central activation domain. J Mol Biol, 249(4), 700-13. PMID: 7602583.

Shima, S., Weiss, D. S. & Thauer, R. K. (1995). Formylmethanofuran:tetrahydromethanopterin formyltransferase (Ftr) from the hyperthermophilic Methanopyrus kandleri. Cloning, sequencing and functional expression of the ftr gene and one-step purification of the enzyme overproduced in Escherichia coli. Eur J Biochem, 230(3), 906-13. PMID: 7601152.

Harms, U., Weiss, D. S., Gärtner, P., Linder, D. & Thauer, R. K. (1995). The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur J Biochem, 228(3), 640-8. PMID: 7737157.

Weiss, D. S., Gärtner, P. & Thauer, R. K. (1994). The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. Eur J Biochem, 226(3), 799-809. PMID: 7813469.

Gärtner, P., Weiss, D. S., Harms, U. & Thauer, R. K. (1994). N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence. Eur J Biochem, 226(2), 465-72. PMID: 8001564.

Klose, K. E., Weiss, D. S. & Kustu, S. (1993). Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J Mol Biol, 232(1), 67-78. PMID: 8331671.

Weiss, D. S., Thauer, R. K. (1993). Methanogenesis and the unity of biochemistry. Cell, 72(6), 819-22. PMID: 8458077.

Weiss, D. S., Klose, K. E., Hoover, T. R., North, A. K., Porter, S. C., Wedel, A. B. & Kustu, S. (1992). Prokaryotic transcriptional enhancers. In S. L. McKnight , K. R. Yamamoto (Eds.) Transcriptional Regulation. Cold Spring Harbor Laboratory Press.

Kustu, S., North, A. K. & Weiss, D. S. (1991). Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem Sci, 16(11), 397-402. PMID: 1776167.

Weiss, D. S., Batut, J., Klose, K. E., Keener, J. & Kustu, S. (1991). The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell, 67(1), 155-67. PMID: 1833069.

Wedel, A., Weiss, D. S., Popham, D., Dröge, P. & Kustu, S. (1990). A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science, 248(4954), 486-90. PMID: 1970441.

Kustu, S., Santero, E., Keener, J., Popham, D. & Weiss, D. S. (1989). Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev, 53(3), 367-76. PMID: 2677638.